11.ForkJoin
ForkJoin
ForkJoin在jdk1.7,并行执行任务!提高效率,大数据量!
大数据:Map Reduce(把大任务拆分成小任务)
ForkJoin特点:工作窃取(如下图)

ForkJoin操作
如何使用。累加求和
-
forkJoinPool来执行
-
计算任务forkJoinPool.execute(ForkJoinTask<?> task)
-
ForkJoinTask.计算任务要集成此类
![]()
1.四大函数式接口,Function,Predicate,Consumer,Supplier
2.forkJoinPool拆分式计算,demo测试
public class Test {
public static void main(String[] args) throws ExecutionException, InterruptedException {
//test1();//普通for循环 328
//test2();//forkjoin 4813
test3();//并行流,247
}
//普通
public static void test1() {
long start = System.currentTimeMillis();
long sum = 0L;
for (long i = 1L; i <= 10_0000_0000L; i++) {
sum += i;
}
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start) + ",sum=" + sum);
}
//forkjoin
public static void test2() throws ExecutionException, InterruptedException {
long start = System.currentTimeMillis();
ForkJoinPool forkJoinPool = new ForkJoinPool();
ForkJoinTask<Long> submit = forkJoinPool.submit(new ForkJoinDemo(1L, 10_0000_0000L));
Long sum = submit.get();
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start) + ",sum=" + sum);
}
//并行流
public static void test3() {
long start = System.currentTimeMillis();
long sum = 0L;
sum = LongStream.rangeClosed(0L, 10_0000_0000L).parallel().reduce(0, Long::sum);
long end = System.currentTimeMillis();
System.out.println("时间:" + (end - start) + ",sum=" + sum);
}
}


浙公网安备 33010602011771号