欧几里得证明$\sqrt{2}$是无理数

选自《费马大定理:一个困惑了世间智者358年的谜》,有少许改动。
原译者:薛密

\(\sqrt{2}\)是无理数,即不能写成一个分数。欧几里得以反证法证明此结论。第一步是假定相反的事实是真的,即\(\sqrt{2}\)可以写成某个未知的分数。用\(\frac{p}{q}\) 来代表这个假设的分数,其中 \(p\)\(q\) 是两个整数。

在开始证明本身之前,需要对分数和偶数的某些性质有个基本的了解。

(1) 如果任取一个整数并且用2去乘它,那么得到的新数一定是偶数。这基本上就是偶数的定义。
(2) 如果已知一个整数的平方是偶数,那么这个整数本身一定是偶数。
(3) 最后,分数可以简化。例如分数\(\frac{16}{24}\),用2除分子分母得\(\frac{8}{12}\),两个分数\(\frac{16}{24}\)\(\frac{8}{12}\)是相等的,进一步,\(\frac{8}{12}\)\(\frac{4}{6}\) 是相等的,而\(\frac{4}{6}\) 又与\(\frac{2}{3}\)是相等的。然而,\(\frac{2}{3}\)不能再化简,因为2 和3没有公因数。不可能将一个分数永远不断地简化。

欧几里得相信\(\sqrt{2}\)不可能写成一个分数。然而,由于他采用反证法,所以他先假定

\begin{equation*} \sqrt{2}=\frac{p}{q} \end{equation*}

将两边平方,得

\begin{equation*} 2=\frac{p^2}{q^2} \end{equation*}

\begin{equation*} 2q^2=p^2 \end{equation*}

现在根据第(1) 点我们知道\(p^2\) 必定是偶数。此外,根据第(2) 点我们知道 \(p\) 本身也必须是偶数。但是,如果 \(p\) 是偶数,那么它可以写成\(2m\),其中\(m\) 是某个别的整数。这是从第(1) 点可以得出的结论。将这再代回到等式中,我们得到

\begin{equation*} 2q^2=p^2=(2m)^2=4m^2 \end{equation*}

两边除以2,得

\begin{equation*} q^2=2m^2 \end{equation*}

但是根据我们前面用过的同样的论证,我们知道 \(q^2\) 必须是偶数,因而 \(q\) 本身必须是偶数。如果确实是这样,那么 \(q\) 可以写成\(2n\),其中 \(n\) 是某个别的整数。如果我们回到开始的地方,那么

\begin{equation*} \sqrt{2}=\frac{p}{q}=\frac{2m}{2n}=\frac{m}{n} \end{equation*}

现在我们得到一个新的分数\(\frac{m}{n}\),它比\(\frac{p}{q}\)更简单。

然而,我们发现对\(\frac{m}{n}\)我们可以精确地重复以上同一个过程,在结束时我们将产生一个更简单的分数,比方说\(\frac{g}{h}\)。然后又可以对这个分数再重复相同的过程,而新的更为简单的分数,比方说\(\frac{e}{f}\)将是。我们可以对它再作同样的处理,并且一次次地重复这个过程,不会结束。但是根据第(3) 点我们知道任何分数不可能永远简化下去,总是必须有一个最简单的分数存在,而我们最初假定的分数\(\frac{p}{q}\) 似乎不服从这条法则。于是,我们可以有正当的理由说我们得出了矛盾。如果\(\sqrt{2}\)可以写成为一个分数,其结果将是不合理的,所以,说\(\sqrt{2}\)不可能写成一个分数是对的。于是,\(\sqrt{2}\)是一个无理数。

posted @ 2016-01-25 22:05  瞿立建  阅读(1034)  评论(0编辑  收藏  举报