GO方法和接口
方法
Go 没有类。不过你可以为结构体类型定义方法。
方法就是一类带特殊的 接收者 参数的函数。
方法接收者在它自己的参数列表内,位于 func 关键字和方法名之间。
在此例中,Abs 方法拥有一个名为 v,类型为 Vertex 的接收者。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
}
方法即函数
记住:方法只是个带接收者参数的函数。
你只能为在同一包内定义的类型的接收者声明方法,而不能为其它包内定义的类型(包括 int 之类的内建类型)的接收者声明方法。
(译注:就是接收者的类型定义和方法声明必须在同一包内;不能为内建类型声明方法。)
指针接收者
go可以为指针接收者声明方法,若使用值接收者,那么 Scale 方法会对原始 Vertex 值的副本进行操作。
指针接收者的方法可以修改接收者指向的值(就像 Scale 在这做的)。由于方法经常需要修改它的接收者,指针接收者比值接收者更常用。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func main() {
v := Vertex{3, 4}
v.Scale(10)
fmt.Println(v.Abs())//50
}
方法与指针重定向
type Vertex struct {
X, Y float64
}
func (v *Vertex) Scale(f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func ScaleFunc(v *Vertex, f float64) {
v.X = v.X * f
v.Y = v.Y * f
}
func main() {
v := Vertex{3, 4}
v.Scale(2)
ScaleFunc(&v, 10)
p := &Vertex{4, 3}
p.Scale(3)
ScaleFunc(p, 8)
fmt.Println(v, p)
}
比较前两个程序,你大概会注意到带指针参数的函数必须接受一个指针:
var v Vertex
ScaleFunc(v, 5) // 编译错误!
ScaleFunc(&v, 5) // OK
而以指针为接收者的方法被调用时,接收者既能为值又能为指针:
var v Vertex
v.Scale(5) // OK
p := &v
p.Scale(10) // OK
对于语句 v.Scale(5),即便 v 是个值而非指针,带指针接收者的方法也能被直接调用。 也就是说,由于 Scale 方法有一个指针接收者,为方便起见,Go 会将语句 v.Scale(5) 解释为 (&v).Scale(5)。
同样的事情也发生在相反的方向。
package main
import (
"fmt"
"math"
)
type Vertex struct {
X, Y float64
}
func (v Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func AbsFunc(v Vertex) float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
v := Vertex{3, 4}
fmt.Println(v.Abs())
fmt.Println(AbsFunc(v))
p := &Vertex{4, 3}
fmt.Println(p.Abs())
fmt.Println(AbsFunc(*p))
}
接受一个值作为参数的函数必须接受一个指定类型的值:
var v Vertex
fmt.Println(AbsFunc(v)) // OK
fmt.Println(AbsFunc(&v)) // 编译错误!
而以值为接收者的方法被调用时,接收者既能为值又能为指针:
var v Vertex
fmt.Println(v.Abs()) // OK
p := &v
fmt.Println(p.Abs()) // OK
这种情况下,方法调用 p.Abs() 会被解释为 (*p).Abs()。
看样子方法比函数好用一些,不管方法定义的时候是否需要传入指针类型,所以主要是定义方法时的方法接受者(*Object 还是 Object)很重要,这决定了是否会改变原对象还是只改变副本。
接口
接口类型 是由一组方法签名定义的集合。
type Abser interface {
Abs() float64
}
type MyFloat float64
func (f MyFloat) Abs() float64 {
if f < 0 {
return float64(-f)
}
return float64(f)
}
type Vertex struct {
X, Y float64
}
func (v *Vertex) Abs() float64 {
return math.Sqrt(v.X*v.X + v.Y*v.Y)
}
func main() {
var a Abser
f := MyFloat(-math.Sqrt2)
v := Vertex{3, 4}
a = f // a MyFloat 实现了 Abser
a = &v // a *Vertex 实现了 Abser
// 下面一行,v 是一个 Vertex(而不是 *Vertex)
// 所以没有实现 Abser。
// a = v
fmt.Println(v.Abs())
fmt.Println(a.Abs())
}
接口这里如果要赋值,必须要和方法接受者一致,上面的v是对象不是指针,虽然使用v.Abs()会变成(*v).Abs(),但是直接将a赋值给v会报错:
由于 Abs 方法只为 *Vertex (指针类型)定义,因此 Vertex(值类型)并未实现 Abser。
cannot use v (type Vertex) as type Abser in assignment: Vertex does not implement Abser (Abs method has pointer receiver)
接口与隐式实现
类型通过实现一个接口的所有方法来实现该接口。既然无需专门显式声明,也就没有“implements”关键字。 (要重新看看python、额)
隐式接口从接口的实现中解耦了定义,这样接口的实现可以出现在任何包中,无需提前准备。
因此,也就无需在每一个实现上增加新的接口名称,这样同时也鼓励了明确的接口定义。
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
// 此方法表示类型 T 实现了接口 I,但我们无需显式声明此事。
func (t T) M() {
fmt.Println(t.S)
}
func main() {
var i I = T{"hello"}
i.M()
}
接口值
接口也是值。它们可以像其它值一样传递。
接口值可以用作函数的参数或返回值。
在内部,接口值可以看做包含值和具体类型的元组:
(value, type)
接口值保存了一个具体底层类型的具体值。
接口值调用方法时会执行其底层类型的同名方法。
package main
import (
"fmt"
"math"
)
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
fmt.Println(t.S)
}
type F float64
func (f F) M() {
fmt.Println(f)
}
func main() {
var i I
i = &T{"Hello"}
describe(i)
i.M()
i = F(math.Pi)
describe(i)
i.M()
}
(&{Hello}, *main.T)
Hello
(3.141592653589793, main.F)
3.141592653589793
底层值为 nil 的接口值
即便接口内的具体值为 nil,方法仍然会被 nil 接收者调用。
在一些语言中,这会触发一个空指针异常,但在 Go 中通常会写一些方法来优雅地处理它(如本例中的 M 方法)。
注意: 保存了 nil 具体值的接口其自身并不为 nil。
package main
import "fmt"
type I interface {
M()
}
type T struct {
S string
}
func (t *T) M() {
if t == nil {
fmt.Println("<nil>")
return
}
fmt.Println(t.S)
}
func main() {
var i I
var t *T
i = t
describe(i)
i.M()
i = &T{"hello"}
describe(i)
i.M()
}
func describe(i I) {
fmt.Printf("(%v, %T)\n", i, i)
}
(<nil>, *main.T)
<nil>
(&{hello}, *main.T)
hello
nil 接口值
nil 接口值既不保存值也不保存具体类型。
为 nil 接口调用方法会产生运行时错误,因为接口的元组内并未包含能够指明该调用哪个 具体 方法的类型。
空接口
指定了零个方法的接口值被称为 空接口:
interface{}
空接口可保存任何类型的值。(因为每个类型都至少实现了零个方法。)
空接口被用来处理未知类型的值。例如,fmt.Print 可接受类型为 interface{} 的任意数量的参数。
类型断言
类型断言 提供了访问接口值底层具体值的方式。
t := i.(T)
该语句断言接口值 i 保存了具体类型 T,并将其底层类型为 T 的值赋予变量 t。
若 i 并未保存 T 类型的值,该语句就会触发一个恐慌。
为了 判断 一个接口值是否保存了一个特定的类型,类型断言可返回两个值:其底层值以及一个报告断言是否成功的布尔值。
t, ok := i.(T)
若 i 保存了一个 T,那么 t 将会是其底层值,而 ok 为 true。
否则,ok 将为 false 而 t 将为 T 类型的零值,程序并不会产生恐慌。
请注意这种语法和读取一个映射时的相同之处。
func main() {
var i interface{} = "hello"
s := i.(string)
fmt.Println(s)
s, ok := i.(string)
fmt.Println(s, ok)
f, ok := i.(float64)
fmt.Println(f, ok)
f = i.(float64) // 报错(panic)
fmt.Println(f)
}
hello
hello true
0 false
panic: interface conversion: interface {} is string, not float64
类型选择
类型选择 是一种按顺序从几个类型断言中选择分支的结构。
类型选择与一般的 switch 语句相似,不过类型选择中的 case 为类型(而非值), 它们针对给定接口值所存储的值的类型进行比较。
switch v := i.(type) {
case T:
// v 的类型为 T
case S:
// v 的类型为 S
default:
// 没有匹配,v 与 i 的类型相同
}
类型选择中的声明与类型断言 i.(T) 的语法相同,只是具体类型 T 被替换成了关键字 type。
此选择语句判断接口值 i 保存的值类型是 T 还是 S。在 T 或 S 的情况下,变量 v 会分别按 T 或 S 类型保存 i 拥有的值。在默认(即没有匹配)的情况下,变量 v 与 i 的接口类型和值相同。
package main
import "fmt"
func do(i interface{}) {
switch v := i.(type) {
case int:
fmt.Printf("Twice %v is %v\n", v, v*2)
case string:
fmt.Printf("%q is %v bytes long\n", v, len(v))
default:
fmt.Printf("I don't know about type %T!\n", v)
}
}
func main() {
do(21)
do("hello")
do(true)
}
Stringer(类似java的 toString)
fmt 包中定义的 Stringer 是最普遍的接口之一。
type Stringer interface {
String() string
}
Stringer 是一个可以用字符串描述自己的类型。fmt 包(还有很多包)都通过此接口来打印值。
package main
import "fmt"
type Person struct {
Name string
Age int
}
//实现String接口
func (p Person) String() string {
return fmt.Sprintf("%v (%v years)", p.Name, p.Age)
}
func main() {
a := Person{"Arthur Dent", 42}
z := Person{"Zaphod Beeblebrox", 9001}
fmt.Println(a, z)
}
练习:Stringer
通过让 IPAddr 类型实现 fmt.Stringer 来打印点号分隔的地址。
例如,IPAddr{1, 2, 3, 4} 应当打印为 "1.2.3.4"。
package main
import "fmt"
type IPAddr [4]byte
// TODO: 给 IPAddr 添加一个 "String() string" 方法
func main() {
hosts := map[string]IPAddr{
"loopback": {127, 0, 0, 1},
"googleDNS": {8, 8, 8, 8},
}
for name, ip := range hosts {
fmt.Printf("%v: %v\n", name, ip)
}
}
func (ipaddr IPAddr) String() string{
str := ""
for i, v := range ipaddr{
fmt.Println(i,string(v))
if i+1 != len(ipaddr){
str = str + string(v) + ","
}else{
str = str + string(v)
}
}
return fmt.Sprintf(str)
}
aaaaaaaaaaaaaaaaaaaaa到底怎么将byte转化为string类型啊

浙公网安备 33010602011771号