1 import pandas as pd
2 from sklearn.model_selection import train_test_split
3 from sklearn.linear_model import LogisticRegression
4 from sklearn.metrics import accuracy_score
5 df = pd.read_csv("./LogisticRegression.csv")
6 df.head()
7 df_x = df.iloc[:,1:]
8 df_y = df.iloc[:,0]
9 df_x_train,df_x_test,df_y_train,df_y_test = train_test_split(df_x,df_y,train_size = 0.8 ,random_state = 2)
10 logistic = LogisticRegression(max_iter = 1000,solver = "newton-cg" ).fit(df_x_train,df_y_train)
11 df_y_predict = logistic.predict(df_x_test)
12 accuracy_score(df_y_test,df_y_predict)
![]() |
|
| 准确率为:0.7125 |
|