[Flink] Flink 经典场景:数据流输出到多个Sink

需求描述

  • Flink 数据流的处理过程中,需要将同一数据流输出到多个输出器(Sink)。

需求分析

  • 在处理数据流时,Flink 提供了一种称为侧输出流(Side Output)的机制,可以将主数据流分割成多个不同的侧输出流。

这种机制在处理不同类型的数据时非常有用,避免了多次复制数据流带来的性能浪费。

  • 使用场景

侧输出流主要有2个作用:

  • 分隔过滤:将源数据中的不同类型的数据进行分割处理。例如,可以将不同价格类型的订单从主流中分开处理。
  • 延时数据处理:在处理延时窗口计算时,对延时到达的数据进行处理,避免数据丢失。

解决方案

案例示范

  • flink 1.15
  • java 8
import com.alibaba.fastjson2.JSON;
import org.apache.flink.api.common.RuntimeExecutionMode;
import org.apache.flink.api.common.functions.RuntimeContext;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple4;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.ProcessFunction;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;
import org.apache.flink.util.Collector;
import org.apache.flink.util.OutputTag;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * @description 验证同一数据流,输出到 多个 sink (含: 侧流的方式)
 */
public class FlinkJobDemo {
    private final static Logger log = LoggerFactory.getLogger(FlinkJobDemo.class);

    public static final String JOB_NAME = "DemoJob";

    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment environment = StreamExecutionEnvironment.getExecutionEnvironment(); // new StreamExecutionEnvironment();————> 错误示范,会报错: `NullPointerException: No execution.target specified in your configuration file.` )
        // 设置运行模式 | STREAMING, BATCH , AUTOMATIC
        environment.setRuntimeMode(RuntimeExecutionMode.AUTOMATIC);
        //将配置设置成全局变量
        //environment.getConfig().setGlobalJobParameters(jobParameterTool);

        //加载数据源
        DataStreamSource<String> dataStreamSource = environment.fromElements( new String [] { "Hello", "World", "Bdp"});

        OutputTag< String > thirdSideOutput = new OutputTag<String>("ThirdSideOutput", TypeInformation.of(new TypeHint< String >() {  }));

        //第1个输出流(主流)
        dataStreamSource
            .keyBy( in -> in )
            .map( in -> { return in.toLowerCase(); } )
            .addSink(new RichSinkFunction<String>() {
                @Override
                public void open(Configuration parameters) throws Exception {
                }

                public void invoke(String input, Context context) throws Exception {
                    System.out.println(String.format("<sink:1> ts:%d, input:%s", System.currentTimeMillis(), JSON.toJSONString( input ) ));
                }
            });

        SingleOutputStreamOperator< String > dataStreamSource2 =
            dataStreamSource
                .process(new ProcessFunction< String , String>() {
                    @Override
                    public void processElement(String value, ProcessFunction<String, String>.Context context, Collector<String> collector) throws Exception {
                        collector.collect( value );//发送到主流
                        context.output( thirdSideOutput, value );//发送到侧流
                    }
                });

        //第2个输出流 (主流)
        dataStreamSource2.addSink(new RichSinkFunction<String>() {
            @Override
            public void open(Configuration parameters) throws Exception {
            }

            public void invoke(String input, Context context) throws Exception {
                System.out.println(String.format("<sink:2> ts:%d, input:%s", System.currentTimeMillis(), JSON.toJSONString( input ) ));
            }
        });

        //第3个输出流 (侧流)
        dataStreamSource2 //dataStreamSource (x)
            .getSideOutput(thirdSideOutput)
            .keyBy( in -> in )
            .addSink(new RichSinkFunction<String>() {
                @Override
                public void open(Configuration parameters) throws Exception {
                }

                public void invoke(String input, Context context) throws Exception {
                    System.out.println(String.format("<sink:3> ts:%d, input:%s", System.currentTimeMillis(), JSON.toJSONString( input ) ));
                }
            });

        environment.execute(JOB_NAME);
    }
}

输出:

<sink:2> ts:1757422085116, input:"Hello"
<sink:2> ts:1757422085116, input:"Bdp"
<sink:2> ts:1757422085116, input:"World"
<sink:1> ts:1757422085048, input:"hello"
<sink:1> ts:1757422085048, input:"bdp"
<sink:1> ts:1757422085048, input:"world"

<sink:3> ts:1757422085623, input:"Hello"
<sink:3> ts:1757422085650, input:"World"
<sink:3> ts:1757422085724, input:"Bdp"

X 参考文献

posted @ 2025-09-10 01:53  千千寰宇  阅读(28)  评论(0)    收藏  举报