【java基础】吐血总结Stream流操作

 

 

Stream流操作讲解

在这里插入图片描述

1 Stream概述

java 8 是一个非常成功的版本,这个版本新增的Stream,配合同版本出现的 Lambda ,给我们操作集合(Collection)提供了极大的便利。

那么什么是Stream

Stream将要处理的元素集合看作一种流,在流的过程中,借助Stream API对流中的元素进行操作,比如:筛选、排序、聚合等。

Stream可以由数组或集合创建,对流的操作分为两种:

  1. 中间操作,每次返回一个新的流,可以有多个。(筛选filter、映射map、排序sorted、去重组合skip—limit)
  2. 终端操作,每个流只能进行一次终端操作,终端操作结束后流无法再次使用。终端操作会产生一个新的集合或值。(遍历foreach、匹配find–match、规约reduce、聚合max–min–count、收集collect)

另外,Stream有几个特性:

  1. stream不存储数据,而是按照特定的规则对数据进行计算,一般会输出结果。
  2. stream不会改变数据源,通常情况下会产生一个新的集合或一个值。
  3. stream具有延迟执行特性,只有调用终端操作时,中间操作才会执行。

2 Stream与传统遍历对比

几乎所有的集合(如 Collection 接口或 Map 接口等)都支持直接或间接的遍历操作。而当我们需要对集合中的元素进行操作的时候,除了必需的添加、删除、获取外,最典型的就是集合遍历。例如:

import java.util.ArrayList;
import java.util.List;
 
public class Demo1List {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("小昭");
        list.add("殷离");
        list.add("张三");
        list.add("张三丰");
 
        List<String> listA = new ArrayList<>();
        for ( String s  : list) {
            if (s.startsWith("张"))
                listA.add(s);
        }
 
        List<String> listB = new ArrayList<>();
        for (String s: listA) {
            if (s.length() == 3)
                listB.add(s);
        }
 
        for (String s: listB) {
            System.out.println(s);
        }
    }
}

 

循环遍历的弊端

   Java 8的Lambda更加专注于做什么(What),而不是怎么做(How),这点此前已经结合内部类进行了对比说明。现在,仔细体会一下上例代码,可以发现:

   for循环的语法就是“怎么做”

   for循环的循环体才是“做什么”

   为什么使用循环?因为要进行遍历。但循环是遍历的唯一方式吗?遍历是指每一个元素逐一进行处理,而并不是从第一个到最后一个顺次处理的循环。前者是目的,后者是方式。

 

使用Stream写法

import java.util.ArrayList;
import java.util.List;
 
public class Demo2Steam {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("张无忌");
        list.add("周芷若");
        list.add("赵敏");
        list.add("小昭");
        list.add("殷离");
        list.add("张三");
        list.add("张三丰");
        list.stream()
                .filter(name -> name.startsWith("张"))
                .filter(name -> name.length() == 3)
                .forEach(name -> System.out.println(name));
    }
}

 

效果显而易见。

3 Stream的创建

Stream可以通过集合数组创建。

1、通过 java.util.Collection.stream() 方法用集合创建流

List<String> list = Arrays.asList("a", "b", "c");
// 创建一个顺序流
Stream<String> stream = list.stream();
// 创建一个并行流
Stream<String> parallelStream = list.parallelStream();

 

输出结果

在这里插入图片描述

2、使用java.util.Arrays.stream(T[] array)方法用数组创建流

int[] array={1,3,5,6,8};
IntStream stream = Arrays.stream(array);

 

3、使用Stream的静态方法:of()、iterate()、generate()

Stream<Integer> stream = Stream.of(1, 2, 3, 4, 5, 6);

Stream<Integer> stream2 = Stream.iterate(0, (x) -> x + 3).limit(4);
stream2.forEach(System.out::println);

Stream<Double> stream3 = Stream.generate(Math::random).limit(3);
stream3.forEach(System.out::println);

 

输出结果:

在这里插入图片描述

stream和parallelStream的简单区分: stream是顺序流,由主线程按顺序对流执行操作,而parallelStream是并行流,内部以多线程并行执行的方式对流进行操作,但前提是流中的数据处理没有顺序要求。例如筛选集合中的奇数,两者的处理不同之处:

在这里插入图片描述

如果流中的数据量足够大,并行流可以加快处速度。

除了直接创建并行流,还可以通过parallel()把顺序流转换成并行流:

Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
List<Integer> list = Arrays.asList(1, 3, 6, 8, 12, 4);
       Optional<Integer> findFirst = list.stream().parallel().filter(x->x>6).findFirst();
       System.out.println("使用Stream的静态方法generate:" + findFirst.get());

 

4 Stream的使用

在使用stream之前,先理解一个概念:Optional

Optional类是一个可以为null的容器对象。如果值存在则isPresent()方法会返回true,调用get()方法会返回该对象。

Optional学习链接---------

首先创建一个案例使用的员工类Person

List<Person> personList = new ArrayList<Person>();
personList.add(new Person("Tom", 8900, "male", "New York"));
personList.add(new Person("Jack", 7000, "male", "Washington"));
personList.add(new Person("Lily", 7800, "female", "Washington"));
personList.add(new Person("Anni", 8200, "female", "New York"));
personList.add(new Person("Owen", 9500, "male", "New York"));
personList.add(new Person("Alisa", 7900, "female", "New York"));

class Person {
	private String name;  // 姓名
	private int salary; // 薪资
	private int age; // 年龄
	private String sex; //性别
	private String area;  // 地区

	// 构造方法
	public Person(String name, int salary, int age,String sex,String area) {
		this.name = name;
		this.salary = salary;
		this.age = age;
		this.sex = sex;
		this.area = area;
	}
	// 省略了get和set,请自行添加

}

 

4.1 遍历/匹配(foreach、find、match)

Stream也是支持类似集合的遍历和匹配元素的,只是Stream中的元素是以Optional类型存在的。Stream的遍历、匹配非常简单。

在这里插入图片描述

// import已省略,请自行添加,后面代码亦是

public class StreamTest {
	public static void main(String[] args) {
       List<Integer> list = Arrays.asList(7, 6, 9, 3, 8, 2, 1);

       // 遍历输出符合条件的元素
       list.stream().filter(x -> x > 6).forEach(System.out::println);
       // 匹配第一个
       Optional<Integer> findFirst = list.stream().filter(x -> x > 6).findFirst();
       // 匹配任意(适用于并行流)
       Optional<Integer> findAny = list.parallelStream().filter(x -> x > 6).findAny();
       // 是否包含符合特定条件的元素
       boolean anyMatch = list.stream().anyMatch(x -> x > 6);
       System.out.println("匹配第一个值:" + findFirst.get());
       System.out.println("匹配任意一个值:" + findAny.get());
       System.out.println("是否存在大于6的值:" + anyMatch);
   }
}

 

输出结果:

在这里插入图片描述

4.2 筛选(filter)

筛选,是按照一定的规则校验流中的元素,将符合条件的元素提取到新的流中的操作。

在这里插入图片描述

filter

Stream<T> filter(Predicate<? super T> predicate);

 

案例一:筛选出Integer集合中大于7的元素,并打印出来**

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(6, 7, 3, 8, 1, 2, 9);
		Stream<Integer> stream = list.stream();
		stream.filter(x -> x > 7).forEach(System.out::println);
	}
}

 

输出结果:

在这里插入图片描述

案例二: 筛选员工中工资高于8000的人,并形成新的集合。 形成新集合依赖collect(收集),后文有详细介绍。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		List<String> fiterList = personList.stream().filter(x -> x.getSalary() > 8000).map(Person::getName)
				.collect(Collectors.toList());
		System.out.print("高于8000的员工姓名:" + fiterList);
	}
}

输出结果:

在这里插入图片描述

4.3 聚合(max、min、count)

maxmincount这些一定不陌生,在mysql中我们常用它们进行数据统计。Java stream中也引入了这些概念和用法,极大地方便了我们对集合、数组的数据统计工作。

在这里插入图片描述

案例一:获取String集合中最长的元素。

public class StreamTest {
	public static void main(String[] args) {
		List<String> list = Arrays.asList("adnm", "admmt", "pot", "xbangd", "weoujgsd");

		Optional<String> max = list.stream().max(Comparator.comparing(String::length));
		System.out.println("最长的字符串:" + max.get());
	}
}

 

输出结果:

在这里插入图片描述

案例二:获取Integer集合中的最大值。

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(7, 6, 9, 4, 11, 6);

		// 自然排序
		Optional<Integer> max = list.stream().max(Integer::compareTo);
		// 自定义排序
		Optional<Integer> max2 = list.stream().max(new Comparator<Integer>() {
			@Override
			public int compare(Integer o1, Integer o2) {
				return o1.compareTo(o2);
			}
		});
		System.out.println("自然排序的最大值:" + max.get());
		System.out.println("自定义排序的最大值:" + max2.get());
	}
}

 

输出结果:

在这里插入图片描述

案例三:获取员工工资最高的人。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		Optional<Person> max = personList.stream().max(Comparator.comparingInt(Person::getSalary));
		System.out.println("员工工资最大值:" + max.get().getSalary());
	}
}

 

输出结果:

在这里插入图片描述

案例四:计算Integer集合中大于6的元素的个数。

import java.util.Arrays;
import java.util.List;

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(7, 6, 4, 8, 2, 11, 9);

		long count = list.stream().filter(x -> x > 6).count();
		System.out.println("list中大于6的元素个数:" + count);
	}
}

 

输出结果:

在这里插入图片描述

4.4 映射(map、flatMap)

映射,可以将一个流的元素按照一定的映射规则映射到另一个流中。分为mapflatMap

  • map:接收一个函数作为参数,该函数会被应用到每个元素上,并将其映射成一个新的元素。
  • flatMap:接收一个函数作为参数,将流中的每个值都换成另一个流,然后把所有流连接成一个流。

在这里插入图片描述

map

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

 

flatMap

<R> Stream<R> flatMap(Function<? super T, ? extends Stream<? extends R>> mapper);

 

案例一:英文字符串数组的元素全部改为大写。整数数组每个元素+3。**

public class StreamTest {
	public static void main(String[] args) {
		String[] strArr = { "abcd", "bcdd", "defde", "fTr" };
		List<String> strList = Arrays.stream(strArr).map(String::toUpperCase).collect(Collectors.toList());

		List<Integer> intList = Arrays.asList(1, 3, 5, 7, 9, 11);
		List<Integer> intListNew = intList.stream().map(x -> x + 3).collect(Collectors.toList());

		System.out.println("每个元素大写:" + strList);
		System.out.println("每个元素+3:" + intListNew);
	}
}

 

输出结果:

在这里插入图片描述

案例二:将员工的薪资全部增加1000。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		// 不改变原来员工集合的方式
		List<Person> personListNew = personList.stream().map(person -> {
			Person personNew = new Person(person.getName(), 0, 0, null, null);
			personNew.setSalary(person.getSalary() + 10000);
			return personNew;
		}).collect(Collectors.toList());
		System.out.println("一次改动前:" + personList.get(0).getName() + "-->" + personList.get(0).getSalary());
		System.out.println("一次改动后:" + personListNew.get(0).getName() + "-->" + personListNew.get(0).getSalary());

		// 改变原来员工集合的方式
		List<Person> personListNew2 = personList.stream().map(person -> {
			person.setSalary(person.getSalary() + 10000);
			return person;
		}).collect(Collectors.toList());
		System.out.println("二次改动前:" + personList.get(0).getName() + "-->" + personListNew.get(0).getSalary());
		System.out.println("二次改动后:" + personListNew2.get(0).getName() + "-->" + personListNew.get(0).getSalary());
	}
}

 

输出结果:

在这里插入图片描述

案例三:将两个字符数组合并成一个新的字符数组。

public class StreamTest {
	public static void main(String[] args) {
		List<String> list = Arrays.asList("m,k,l,a", "1,3,5,7");
		List<String> listNew = list.stream().flatMap(s -> {
			// 将每个元素转换成一个stream
			String[] split = s.split(",");
			Stream<String> s2 = Arrays.stream(split);
			return s2;
		}).collect(Collectors.toList());

		System.out.println("处理前的集合:" + list);
		System.out.println("处理后的集合:" + listNew);
	}
}

 

输出结果:

在这里插入图片描述

4.5 规约(reduce)

归约,也称缩减,顾名思义,是把一个流缩减成一个值,能实现对集合求和、求乘积和求最值操作。

在这里插入图片描述

reduce

 	T reduce(T identity, BinaryOperator<T> accumulator);
	@Override
   public final P_OUT reduce(final P_OUT identity, final BinaryOperator<P_OUT> accumulator) {
       return evaluate(ReduceOps.makeRef(identity, accumulator, accumulator));
   }


	Optional<T> reduce(BinaryOperator<T> accumulator);
   @Override
   public final Optional<P_OUT> reduce(BinaryOperator<P_OUT> accumulator) {
       return evaluate(ReduceOps.makeRef(accumulator));
   }


<U> U reduce(U identity,
                BiFunction<U, ? super T, U> accumulator,
                BinaryOperator<U> combiner);
   @Override
   public final <R> R reduce(R identity, BiFunction<R, ? super P_OUT, R> accumulator, BinaryOperator<R> combiner) {
       return evaluate(ReduceOps.makeRef(identity, accumulator, combiner));
   }

 

Optional reduce(BinaryOperator accumulator):第一次执行时,accumulator函数的第一个参数为流中的第一个元素,第二个参数为流中元素的第二个元素;第二次执行时,第一个参数为第一次函数执行的结果,第二个参数为流中的第三个元素;依次类推。
​ T reduce(T identity, BinaryOperator accumulator):流程跟上面一样,只是第一次执行时,accumulator函数的第一个参数为identity,而第二个参数为流中的第一个元素。

案例一:求Integer集合的元素之和、乘积和最大值。**

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(1, 3, 2, 8, 11, 4);
		// 求和方式1
		Optional<Integer> sum = list.stream().reduce((x, y) -> x + y);
		// 求和方式2
		Optional<Integer> sum2 = list.stream().reduce(Integer::sum);
		// 求和方式3
		Integer sum3 = list.stream().reduce(0, Integer::sum);
		
		// 求乘积
		Optional<Integer> product = list.stream().reduce((x, y) -> x * y);

		// 求最大值方式1
		Optional<Integer> max = list.stream().reduce((x, y) -> x > y ? x : y);
		// 求最大值写法2
		Integer max2 = list.stream().reduce(1, Integer::max);

		System.out.println("list求和:" + sum.get() + "," + sum2.get() + "," + sum3);
		System.out.println("list求积:" + product.get());
		System.out.println("list求和:" + max.get() + "," + max2);
	}
}

 

输出结果

在这里插入图片描述

案例二:求所有员工的工资之和和最高工资。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		personList.add(new Person("Owen", 9500, 25, "male", "New York"));
		personList.add(new Person("Alisa", 7900, 26, "female", "New York"));

		// 求工资之和方式1:
		Optional<Integer> sumSalary = personList.stream().map(Person::getSalary).reduce(Integer::sum);
		// 求工资之和方式2:
		Integer sumSalary2 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(),
				(sum1, sum2) -> sum1 + sum2);
		// 求工资之和方式3:
		Integer sumSalary3 = personList.stream().reduce(0, (sum, p) -> sum += p.getSalary(), Integer::sum);

		// 求最高工资方式1:
		Integer maxSalary = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
				Integer::max);
		// 求最高工资方式2:
		Integer maxSalary2 = personList.stream().reduce(0, (max, p) -> max > p.getSalary() ? max : p.getSalary(),
				(max1, max2) -> max1 > max2 ? max1 : max2);

		System.out.println("工资之和:" + sumSalary.get() + "," + sumSalary2 + "," + sumSalary3);
		System.out.println("最高工资:" + maxSalary + "," + maxSalary2);
	}
}

 

输出结果:

在这里插入图片描述

4.6 收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。

collect主要依赖java.util.stream.Collectors类内置的静态方法。

4.6.1 归集(toList、toSet、toMap)

因为流不存储数据,那么在流中的数据完成处理后,需要将流中的数据重新归集到新的集合里。toListtoSettoMap比较常用,另外还有toCollectiontoConcurrentMap等复杂一些的用法。

下面用一个案例演示toListtoSettoMap

public class StreamTest {
	public static void main(String[] args) {
		List<Integer> list = Arrays.asList(1, 6, 3, 4, 6, 7, 9, 6, 20);
		List<Integer> listNew = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toList());
		Set<Integer> set = list.stream().filter(x -> x % 2 == 0).collect(Collectors.toSet());

		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));
		personList.add(new Person("Anni", 8200, 24, "female", "New York"));
		
		Map<?, Person> map = personList.stream().filter(p -> p.getSalary() > 8000)
				.collect(Collectors.toMap(Person::getName, p -> p));
		System.out.println("toList:" + listNew);
		System.out.println("toSet:" + set);
		System.out.println("toMap:" + map);
	}
}

 

输出结果

在这里插入图片描述

4.6.2 统计(count、averaging)

Collectors提供了一系列用于数据统计的静态方法:

  • 计数:count
  • 平均值:averagingInt、averagingLong、averagingDouble
  • 最值:maxBy、minBy
  • 求和:summingInt、summingLong、summingDouble
  • 统计以上所有:summarizingInt、summarizingLong、summarizingDouble

案例:统计员工人数、平均工资、工资总额、最高工资。

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		// 求总数
		Long count = personList.stream().collect(Collectors.counting());
		// 求平均工资
		Double average = personList.stream().collect(Collectors.averagingDouble(Person::getSalary));
		// 求最高工资
		Optional<Integer> max = personList.stream().map(Person::getSalary).collect(Collectors.maxBy(Integer::compare));
		// 求工资之和
		Integer sum = personList.stream().collect(Collectors.summingInt(Person::getSalary));
		// 一次性统计所有信息
		DoubleSummaryStatistics collect = personList.stream().collect(Collectors.summarizingDouble(Person::getSalary));

		System.out.println("员工总数:" + count);
		System.out.println("员工平均工资:" + average);
		System.out.println("员工工资总和:" + sum);
		System.out.println("员工工资所有统计:" + collect);
	}
}

 

输出结果:

在这里插入图片描述

4.6.3 分组(partitioningBy、groupingBy)
  • 分区:将stream按条件分为两个Map,比如员工按薪资是否高于8000分为两部分。

  • 分组:将集合分为多个Map,比如员工按性别分组。有单级分组和多级分组。

在这里插入图片描述

partitioningBy

public static <T>
   Collector<T, ?, Map<Boolean, List<T>>> partitioningBy(Predicate<? super T> predicate) {
       return partitioningBy(predicate, toList());
   }

 

groupingBy

public static <T, K> Collector<T, ?, Map<K, List<T>>>
   groupingBy(Function<? super T, ? extends K> classifier) {
       return groupingBy(classifier, toList());
   }

 

案例:将员工按薪资是否高于8000分为两部分;将员工按性别和地区分组**

public class StreamTest {
public static void main(String[] args) {
	List<Person> personList = new ArrayList<Person>();
	personList.add(new Person("Tom", 8900, "male", "New York"));
	personList.add(new Person("Jack", 7000, "male", "Washington"));
	personList.add(new Person("Lily", 7800, "female", "Washington"));
	personList.add(new Person("Anni", 8200, "female", "New York"));
	personList.add(new Person("Owen", 9500, "male", "New York"));
	personList.add(new Person("Alisa", 7900, "female", "New York"));

	// 将员工按薪资是否高于8000分组
       Map<Boolean, List<Person>> part = personList.stream().collect(Collectors.partitioningBy(x -> x.getSalary() > 8000));
       // 将员工按性别分组
       Map<String, List<Person>> group = personList.stream().collect(Collectors.groupingBy(Person::getSex));
       // 将员工先按性别分组,再按地区分组
       Map<String, Map<String, List<Person>>> group2 = personList.stream().collect(Collectors.groupingBy(Person::getSex, Collectors.groupingBy(Person::getArea)));
       System.out.println("员工按薪资是否大于8000分组情况:" + part);
       System.out.println("员工按性别分组情况:" + group);
       System.out.println("员工按性别、地区:" + group2);
}
}

 

输出结果:

在这里插入图片描述

4.6.4 接合(joining)

joining可以将stream中的元素用特定的连接符(没有的话,则直接连接)连接成一个字符串。

joining

public static Collector<CharSequence, ?, String> joining(CharSequence delimiter) {
       return joining(delimiter, "", "");
   }

 

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		String names = personList.stream().map(p -> p.getName()).collect(Collectors.joining(","));
		System.out.println("所有员工的姓名:" + names);
		List<String> list = Arrays.asList("A", "B", "C");
		String string = list.stream().collect(Collectors.joining("-"));
		System.out.println("拼接后的字符串:" + string);
	}
}

 

输出结果:

在这里插入图片描述

4.6.5 规约(reducing)

Collectors类提供的reducing方法,相比于stream本身的reduce方法,增加了对自定义归约的支持。

reducing

public static <T> Collector<T, ?, Optional<T>>
   reducing(BinaryOperator<T> op) {
       class OptionalBox implements Consumer<T> {
           T value = null;
           boolean present = false;

           @Override
           public void accept(T t) {
               if (present) {
                   value = op.apply(value, t);
               }
               else {
                   value = t;
                   present = true;
               }
           }
       }

       return new CollectorImpl<T, OptionalBox, Optional<T>>(
               OptionalBox::new, OptionalBox::accept,
               (a, b) -> { if (b.present) a.accept(b.value); return a; },
               a -> Optional.ofNullable(a.value), CH_NOID);
   }

 

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();
		personList.add(new Person("Tom", 8900, 23, "male", "New York"));
		personList.add(new Person("Jack", 7000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 7800, 21, "female", "Washington"));

		// 每个员工减去起征点后的薪资之和(这个例子并不严谨,但一时没想到好的例子)
		Integer sum = personList.stream().collect(Collectors.reducing(0, Person::getSalary, (i, j) -> (i + j - 5000)));
		System.out.println("员工扣税薪资总和:" + sum);

		// stream的reduce
		Optional<Integer> sum2 = personList.stream().map(Person::getSalary).reduce(Integer::sum);
		System.out.println("员工薪资总和:" + sum2.get());
	}
}

 

输出结果:

在这里插入图片描述

4.7 排序(sorted)

sorted,中间操作。有两种排序:

  • sorted():自然排序,流中元素需实现Comparable接口
  • sorted(Comparator com):Comparator排序器自定义排序

sorted

   Stream<T> sorted();

   @Override
   public final Stream<P_OUT> sorted() {
       return SortedOps.makeRef(this);
   }

 

sorted(Comparator com)

	Stream<T> sorted(Comparator<? super T> comparator);

	@Override
   public final Stream<P_OUT> sorted(Comparator<? super P_OUT> comparator) {
       return SortedOps.makeRef(this, comparator);
   }

 

案例:将员工按工资由高到低(工资一样则按年龄由大到小)排序

public class StreamTest {
	public static void main(String[] args) {
		List<Person> personList = new ArrayList<Person>();

		personList.add(new Person("Sherry", 9000, 24, "female", "New York"));
		personList.add(new Person("Tom", 8900, 22, "male", "Washington"));
		personList.add(new Person("Jack", 9000, 25, "male", "Washington"));
		personList.add(new Person("Lily", 8800, 26, "male", "New York"));
		personList.add(new Person("Alisa", 9000, 26, "female", "New York"));

		// 按工资升序排序(自然排序)
		List<String> newList = personList.stream().sorted(Comparator.comparing(Person::getSalary)).map(Person::getName)
				.collect(Collectors.toList());
		// 按工资倒序排序
		List<String> newList2 = personList.stream().sorted(Comparator.comparing(Person::getSalary).reversed())
				.map(Person::getName).collect(Collectors.toList());
		// 先按工资再按年龄升序排序
		List<String> newList3 = personList.stream()
				.sorted(Comparator.comparing(Person::getSalary).thenComparing(Person::getAge)).map(Person::getName)
				.collect(Collectors.toList());
		// 先按工资再按年龄自定义排序(降序)
		List<String> newList4 = personList.stream().sorted((p1, p2) -> {
			if (p1.getSalary() == p2.getSalary()) {
				return p2.getAge() - p1.getAge();
			} else {
				return p2.getSalary() - p1.getSalary();
			}
		}).map(Person::getName).collect(Collectors.toList());

		System.out.println("按工资升序排序:" + newList);
		System.out.println("按工资降序排序:" + newList2);
		System.out.println("先按工资再按年龄升序排序:" + newList3);
		System.out.println("先按工资再按年龄自定义降序排序:" + newList4);
	}
}

 

输出结果:

在这里插入图片描述

4.8 去重、合并(distinct、skip、limit)

流也可以进行合并、去重、限制、跳过等操作。

distinct(去重)

Stream<T> distinct();

@Override
   public final Stream<P_OUT> distinct() {
       return DistinctOps.makeRef(this);
   }

 

skip(跳过)

Stream<T> skip(long n);

@Override
   public final Stream<P_OUT> skip(long n) {
       if (n < 0)
           throw new IllegalArgumentException(Long.toString(n));
       if (n == 0)
           return this;
       else
           return SliceOps.makeRef(this, n, -1);
   }

 

limit

Stream<T> limit(long maxSize);

 @Override
   public final Stream<P_OUT> limit(long maxSize) {
       if (maxSize < 0)
           throw new IllegalArgumentException(Long.toString(maxSize));
       return SliceOps.makeRef(this, 0, maxSize);
   }

 

在这里插入图片描述

public class StreamTest {
	public static void main(String[] args) {
		String[] arr1 = { "a", "b", "c", "d" };
		String[] arr2 = { "d", "e", "f", "g" };

		Stream<String> stream1 = Stream.of(arr1);
		Stream<String> stream2 = Stream.of(arr2);
		// concat:合并两个流 distinct:去重
		List<String> newList = Stream.concat(stream1, stream2).distinct().collect(Collectors.toList());
		// limit:限制从流中获得前n个数据
		List<Integer> collect = Stream.iterate(1, x -> x + 2).limit(10).collect(Collectors.toList());
		// skip:跳过前n个数据  这里的1代表把1代入后边的计算表达式
		List<Integer> collect2 = Stream.iterate(1, x -> x + 2).skip(1).limit(5).collect(Collectors.toList());

		System.out.println("流合并:" + newList);
		System.out.println("limit:" + collect);
		System.out.println("skip:" + collect2);
	}
}

 

运行结果:

在这里插入图片描述

 
 
posted @ 2022-09-23 13:19  程序员Logger  阅读(49)  评论(0编辑  收藏  举报