协同过滤CF算法之入门
数据规整
首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里:
>>> data = ratings.pivot(index='user_id',columns='movie_id',values='rating')
>>> data[:5]movie_id 1 2 3 4 5 6 user_id 1 5 NaN NaN NaN NaN NaN ...2 NaN NaN NaN NaN NaN NaN ...3 NaN NaN NaN NaN NaN NaN ...4 NaN NaN NaN NaN NaN NaN ...5 NaN NaN NaN NaN NaN 2 ... >>> check_size = 1000
>>> check = {}>>> check_data = data.copy()#复制一份 data 用于检验,以免篡改原数据>>> check_data = check_data.ix[check_data.count(axis=1)>200]#滤除评价数小于200的用户>>> for user in np.random.permutation(check_data.index): movie = np.random.permutation(check_data.ix[user].dropna().index)[0] check[(user,movie)] = check_data.ix[user,movie] check_data.ix[user,movie] = np.nan check_size -= 1 if not check_size: break>>> corr = check_data.T.corr(min_periods=200)>>> corr_clean = corr.dropna(how='all')>>> corr_clean = corr_clean.dropna(axis=1,how='all')#删除全空的行和列>>> check_ser = Series(check)#这里是被提取出来的 1000 个真实评分>>> check_ser[:5](15, 593) 4(23, 555) 3(33, 3363) 4(36, 2355) 5(53, 3605) 4dtype: float64参考:
每天一小步,人生一大步!Good luck~
浙公网安备 33010602011771号