[hdu5313]二分图性质,dp
题意:给定二分图,求添加的最多边数,使得添加之后还是二分图
思路:如果原图可以分成X,Y两个点集,那么边数最多为|X||Y|条。由于|X|+|Y|==n,所以需要使|X|与|Y|尽量接近。先对原图进行染色,对每个连通块,求出它的两种颜色的点数差,并且交换染的颜色,染色方案依然成立。不妨设染色0和1,cnt[i]表示颜色为i的点的个数,并假设cnt[1]总是大于等于cnt[0],|X|对应cnt[1],|Y|对应cnt[0],
(1)对于同一个连通块,由于可以改变第一次染的颜色,则有:
cnt[1]-cnt[0] = ±abs(cnt[1]-cnt[0])
(2)对不同连通块,有:
cnt[1]-cnt[0]=Σ±abs(cnt[1]-cnt[0])
左边表示最后的染色为1和0的点数差,也就是|X|-|Y|,右边是一个表达式,值取决于对每一个连通块取的正负情况。于是相当于在一系列正数前面添上正负号,使得最后结果是最小的正数,注意到每个数前面必须添上正号或符号,而所有正数的和是知道的,令为V,同时令第i个正数为Ai,于是转化为以V/2为背包容量、Ai为物品体积、求背包能放满的最大体积,用V减去2倍这个答案就是等号左边的最小值了。|X|-|Y|和|X|+|Y|都出来了,求出|X|、|Y|,|X||Y|-m便是答案。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 | /* ******************************************************************************** */#include <iostream> //#include <cstdio> //#include <cmath> //#include <cstdlib> //#include <cstring> //#include <vector> //#include <ctime> //#include <deque> //#include <queue> //#include <algorithm> //using namespace std; // //#define pb push_back //#define mp make_pair //#define X first //#define Y second //#define all(a) (a).begin(), (a).end() //#define foreach(i, a) for (typeof(a.begin()) it = a.begin(); it != a.end(); it ++) // //void RI(vector<int>&a,int n){a.resize(n);for(int i=0;i<n;i++)scanf("%d",&a[i]);} //void RI(){}void RI(int&X){scanf("%d",&X);}template<typename...R> //void RI(int&f,R&...r){RI(f);RI(r...);}void RI(int*p,int*q){int d=p<q?1:-1; //while(p!=q){scanf("%d",p);p+=d;}}void print(){cout<<endl;}template<typename T> //void print(const T t){cout<<t<<endl;}template<typename F,typename...R> //void print(const F f,const R...r){cout<<f<<", ";print(r...);}template<typename T> //void print(T*p, T*q){int d=p<q?1:-1;while(p!=q){cout<<*p<<", ";p+=d;}cout<<endl;} // //typedef pair<int, int> pii; //typedef long long ll; //typedef unsigned long long ull; // ///* -------------------------------------------------------------------------------- */ //template<typename T>bool umax(T &a, const T &b) { return a >= b? false : (a = b, true);}const int maxn = 1e4 + 7;struct Graph { vector<vector<int> > G; void clear() { G.clear(); } void resize(int n) { G.resize(n + 2); } void add(int u, int v) { G[u].push_back(v); } vector<int> & operator [] (int u) { return G[u]; }};Graph G;int color[maxn], cnt[3];void dfs(int node, int c) { color[node] = c; cnt[c] ++; for (int i = 0; i < G[node].size(); i ++) { int v = G[node][i]; if (!color[v]) dfs(v, 3 - c); }}vector<int> dp;int a[maxn];int get(int n, int v) { sort(a + 1, a + 1 + n); dp.clear(); dp.pb(0); int now = 0, ans = 0; bool have[12345] = {true}; for (int i = 1; i <= n; i ++) { int sz = dp.size(); for (int j = 0; j < sz; j ++) { int buf = dp[j] + a[i]; if (buf <= v && !have[buf]) { if (buf == v) return v; dp.pb(buf); have[buf] = true; umax(ans, buf); } } } return ans;}int main() {#ifndef ONLINE_JUDGE freopen("in.txt", "r", stdin);#endif // ONLINE_JUDGE int T, n, m; cin >> T; while (T --) { cin >> n >> m; G.clear(); G.resize(n); for (int i = 0; i < m; i ++) { int u, v; scanf("%d%d", &u, &v); G.add(u, v); G.add(v, u); } memset(color, 0, sizeof(color)); int t = 0, total = 0; for (int i = 1; i <= n; i ++) { if (!color[i]) { cnt[1] = cnt[2] = 0; dfs(i, 1); a[++ t] = cnt[1] - cnt[2]; if (a[t] < 0) a[t] = -a[t]; total += a[t]; } } int y = total / 2, r = total - 2 * get(t, y); cout << (n + r) / 2 * (n - r) / 2 - m << endl; } return 0; //} // // // ///* ******************************************************************************** */ |

浙公网安备 33010602011771号