实验6:开源控制器实践——RYU

实验6:开源控制器实践——RYU

一、实验目的

能够独立部署RYU控制器;
能够理解RYU控制器实现软件定义的集线器原理;
能够理解RYU控制器实现软件定义的交换机原理。

二、实验环境

Ubuntu 20.04 Desktop amd64

三、实验要求

(一)基本要求

  • 搭建下图所示SDN拓扑,协议使用Open Flow 1.0

  • 连接Ryu控制器,通过Ryu的图形界面查看网络拓扑

  • 阅读Ryu文档的The First Application一节,运行当中的L2Switch,h1 ping h2或h3,在目标主机使用 tcpdump 验证L2Switch,分析L2Switch和POX的Hub模块有何不同。

不同:hub和L2Switch模块都是洪泛转发,但是运行L2Switch模块时无法查看下发的流表项,而hub模块可以

  • 修改前查看流表项

  • 编程修改L2Switch.py,另存为L2xxxxxxxxx.py,使之和POX的Hub模块的变得一致?(xxxxxxxxx为学号)

from ryu.base import app_manager
from ryu.ofproto import ofproto_v1_3
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER, CONFIG_DISPATCHER
from ryu.controller.handler import set_ev_cls
 
 
class hub(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(hub, self).__init__(*args, **kwargs)
 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_feathers_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
 
        # install flow table-miss flow entry
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_CONTROLLER, ofproto.OFPCML_NO_BUFFER)]
        # 1\OUTPUT PORT, 2\BUFF IN SWITCH?
        self.add_flow(datapath, 0, match, actions)
 
    def add_flow(self, datapath, priority, match, actions):
        # 1\ datapath for the switch, 2\priority for flow entry, 3\match field, 4\action for packet
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        # install flow
        inst = [ofp_parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS, actions)]
        mod = ofp_parser.OFPFlowMod(datapath=datapath, priority=priority, match=match, instructions=inst)
        datapath.send_msg(mod)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        ofp_parser = datapath.ofproto_parser
        in_port = msg.match['in_port']  # get in port of the packet
 
        # add a flow entry for the packet
        match = ofp_parser.OFPMatch()
        actions = [ofp_parser.OFPActionOutput(ofproto.OFPP_FLOOD)]
        self.add_flow(datapath, 1, match, actions)
 
        # to output the current packet. for install rules only output later packets
        out = ofp_parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id, in_port=in_port, actions=actions)
        # buffer id: locate the buffered packet
        datapath.send_msg(out)
  • 修改后查看流表项

(二)进阶要求

  • 阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作
# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

#引入数据包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):   #继承ryu.base.app_manager类
    #定义openflow版本
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)   #继承父类初始化
        self.mac_to_port = {}   #保存(交换机id,mac地址)到转发端口的字典

    #处理SwitchFeatures事件
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)    
    #当ofp_event.EventOFPSwitchFeatures这样的一个事件来临,且处于CONFIG_DISPATCHER这样一个阶段时,触发这个方法switch_features_handler(self, ev)
    #其中ev参数是ofp_event.EventOFPSwitchFeatures的这样一个事件类的对象
    #CONFIG_DISPATCHER代表协议版本确认后向交换机发送特性请求消息的阶段
    #进入该阶段后,控制器自动发送特性请求消息,交换机接收后进行回复——EventOFPSwitchFeatures
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath  #packet_in报文的datapath结构
        ofproto = datapath.ofproto  #OpenFlow协议数据结构的对象
        parser = datapath.ofproto_parser    #按照OPpenFlow解析的数据结构

        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()   #match指流表项匹配,OFPMatch()指不匹配任何信息
        #actions是一个列表,存放action list,在其中添加动作
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        #1.datapath存储交换机的基本信息,如id,端口信息 2.priority越高,优先级就越高 3.match这里构造的parser.OFPMatch()代表没有匹配任何东西。
        #4.actions这里构造的意思是发送给控制器。意思是,当没有匹配任何其它流表时,发送请求给控制器。(因为它的优先级最低是0)
        self.add_flow(datapath, 0, match, actions)

    #add_flow()增加流表项
    #datapath;指定的switch
    #priority;此规则的优先权
    #match;此规则的match条件
    #actions;动作
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        #获取交换机信息
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        #对actions进行包装
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        
        #判断是否存在buffer_id,并生成mod对象
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)

        #发送出去
        datapath.send_msg(mod)

    #处理packet_in事件
    #代表交换机发送数据包给控制器引发的类,且一定是在MAIN_DISPATCHER这个阶段才触发
    #MAIN_DISPATCHER代表特性消息接收到后到断开连接前的阶段
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)                                                         
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        #如果传输出错,直接丢弃
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        
        #解析数据结构,从事件中取出变量
        msg = ev.msg    #ev.msg是代表packet_in 数据结构对象
        datapath = msg.datapath
        #datapath.ofproto和datepath.ofproto_parser是代表Ryu和交换机谈判的OpenFlow协议的对象
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']  #获取源端口
                pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            #如果接收到lldp包,就直接丢弃
            return
        dst = eth.dst   #获取目的端口
        src = eth.src   #获取源端口

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        #学习mac地址以阻止下次继续洪泛
        self.mac_to_port[dpid][src] = in_port   #dpid-交换机id     src-数据包源mac地址   in_port-交换机接收到包的端口

        #查看是否已经学习过该目的mac地址
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]  #如果目的地址存在mac_to_port中,向交换机下发流表,并向相应的端口转发包
        #否则,洪泛
        else:
            out_port = ofproto.OFPP_FLOOD   #OFPP_FLOOD标志表示应在所有端口发送数据包,即进行洪泛转发

        actions = [parser.OFPActionOutput(out_port)]

        # install a flow to avoid packet_in next time
        #下发流表以避免下次触发packet_in事件
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            #验证是否拥有一个有效的buffer_id,如果是则避免同时发送flow_mod和packet_out
            #如果msg.buffer_id不为None,即交换机把数据包存储在缓冲区,控制器下发parser.OFPPacketOut命令时,只需要指定buffer_id,并下发流表
            #如果没有存储在缓冲区,控制器下发命令时,不仅要更改交换机流表项,又要把数据包的信息传给交换机让其转发
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
        #发送packet_out数据包
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        #发送流表
        datapath.send_msg(out)

  • 回答下列问题:

a) 代码当中的mac_to_port的作用是什么?

保存(交换机id,mac地址)到转发端口的字典

b) simple_switch和simple_switch_13在dpid的输出上有何不同?

在simple_switch_13.py中为dpid = format(datapath.id, "d").zfill(16)
在simple_switch.py中为dpid = datapath.id
在simple_switch_13.py中使用了zfill() 方法返回指定长度为16的字符串,原字符串右对齐,前面填充0;而simple_switch.py直接输出dpid

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?

增加了实现交换机以特性应答消息响应特性请求功能

d) simple_switch_13是如何实现流规则下发的?

在触发PacketIn事件后,首先解析相关数据结构,获取协议信息、获取源端口、包学习,交换机信息,以太网信息,等。如果以太网类型是LLDP类型,则忽略。如果不是LLDP类型,则获取目的端口和源端口还有交换机id,然后进行交换机自学习,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有就洪泛转发。如果学习过,则查看是否有buffer_id,如果有则在添加流时加上buffer_id指定缓冲区内的数据包,向交换机发送流表即可;如果没有buffer_id,控制器不仅需要向交换机发送流表,还要将数据包转交给交换机。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?

switch_features_handler下发流表的优先级比_packet_in_handler高

  • 编程实现和ODL实验的一样的硬超时功能
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types


class SimpleSwitch13(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]

    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}

    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)

    def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser

        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst, hard_timeout=hard_timeout)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst, hard_timeout=hard_timeout)
        datapath.send_msg(mod)

    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']

        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]

        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src

        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})

        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)

        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port

        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD

        actions = [parser.OFPActionOutput(out_port)]\

        actions_timeout=[]

        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            hard_timeout=10
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data

        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)


  • 运行结果

  • 查看流表项

(三)实验报告

本次实验本身的难度与实验五相当,但是由于个人的原因使得难度飙升...
因为一开始不太熟悉ryu的各种功能和操作方法,在遇到问题的时候就明显慌了神。基础要求中需要打开网页展示图形界面时,我只能刷新出“Ryu Topology Viewer”字样,而并未出现任何图形,我还以为是ryu安装过程中产生瑕疵,这一点导致我陷入僵局,不断地查看ryu的各种操作指南尝试修复bug,花费了大量的时间而做无用功,当我退无可退准备重新安装ryu时我才发现虚拟机的网络设置出现了问题,无法从github进行clone操作...于是又花了很长时间查询虚拟机网络设置的修复指南,最后的最后才因为误点开了浏览器才发现是VMware的网络设置问题,恢复默认网络设置之后才终于可以正常进行实验...
后面的其他操作都比较顺利,在代码的注释和编写上花了相对多的时间去查阅文档资料。
通过这次实验,我明白了应该在实验前就做好充足的准备,不打无准备之仗,也意识到有一个好心态是多么重要,只要不放弃,一定天无绝人之路。在实验中,我明白了ryu与pox控制器之间的差异,在对ryu模块代码进行注释的过程中也加强了我对python代码的理解程度,同时对于其模块的运行过程有了相对深入的了解。

posted on 2022-10-18 19:44  简直像空气  阅读(236)  评论(0)    收藏  举报