极简transformer,仅供理解原理

import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class PositionalEncoding(nn.Module):
    """位置编码:为输入序列添加位置信息"""
    def __init__(self, d_model, max_len=5000):
        super().__init__()
        
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * 
                           (-math.log(10000.0) / d_model))
        
        pe[:, 0::2] = torch.sin(position * div_term)  # 偶数位置用sin
        pe[:, 1::2] = torch.cos(position * div_term)  # 奇数位置用cos
        
        pe = pe.unsqueeze(0)  # [1, max_len, d_model]
        self.register_buffer('pe', pe)  # 不参与训练
        
    def forward(self, x):
        # x: [batch_size, seq_len, d_model]
        return x + self.pe[:, :x.size(1)]

class MultiHeadAttention(nn.Module):
    """多头注意力机制"""
    def __init__(self, d_model, num_heads, dropout=0.1):
        super().__init__()
        assert d_model % num_heads == 0, "d_model 必须能被 num_heads 整除"
        
        self.d_model = d_model
        self.num_heads = num_heads
        self.d_k = d_model // num_heads  # 每个头的维度
        
        # 线性变换层
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, d_model)
        self.W_v = nn.Linear(d_model, d_model)
        self.W_o = nn.Linear(d_model, d_model)
        
        self.dropout = nn.Dropout(dropout)
        
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        # Q, K, V: [batch_size, num_heads, seq_len, d_k]
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
            
        attn_probs = F.softmax(attn_scores, dim=-1)
        attn_probs = self.dropout(attn_probs)
        
        output = torch.matmul(attn_probs, V)
        return output, attn_probs
        
    def forward(self, Q, K, V, mask=None):
        batch_size = Q.size(0)
        
        # 1. 线性变换并分头
        Q = self.W_q(Q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        K = self.W_k(K).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        V = self.W_v(V).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        
        # 2. 缩放点积注意力
        attn_output, attn_probs = self.scaled_dot_product_attention(Q, K, V, mask)
        
        # 3. 合并多头
        attn_output = attn_output.transpose(1, 2).contiguous().view(
            batch_size, -1, self.d_model)
        
        # 4. 最终线性变换
        output = self.W_o(attn_output)
        return output, attn_probs

class FeedForward(nn.Module):
    """前馈神经网络(每个位置独立处理)"""
    def __init__(self, d_model, d_ff=2048, dropout=0.1):
        super().__init__()
        self.linear1 = nn.Linear(d_model, d_ff)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(d_ff, d_model)
        
    def forward(self, x):
        return self.linear2(self.dropout(F.relu(self.linear1(x))))

class EncoderLayer(nn.Module):
    """单个编码器层"""
    def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
        self.ffn = FeedForward(d_model, d_ff, dropout)
        
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, mask=None):
        # 1. 多头自注意力 + 残差连接 + 层归一化
        attn_output, _ = self.self_attn(x, x, x, mask)
        x = x + self.dropout(attn_output)
        x = self.norm1(x)
        
        # 2. 前馈网络 + 残差连接 + 层归一化
        ffn_output = self.ffn(x)
        x = x + self.dropout(ffn_output)
        x = self.norm2(x)
        
        return x

class DecoderLayer(nn.Module):
    """单个解码器层"""
    def __init__(self, d_model, num_heads, d_ff, dropout=0.1):
        super().__init__()
        self.self_attn = MultiHeadAttention(d_model, num_heads, dropout)
        self.cross_attn = MultiHeadAttention(d_model, num_heads, dropout)
        self.ffn = FeedForward(d_model, d_ff, dropout)
        
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        
    def forward(self, x, encoder_output, src_mask=None, tgt_mask=None):
        # 1. 掩码多头自注意力
        attn_output, _ = self.self_attn(x, x, x, tgt_mask)
        x = x + self.dropout(attn_output)
        x = self.norm1(x)
        
        # 2. 交叉注意力
        attn_output, _ = self.cross_attn(x, encoder_output, encoder_output, src_mask)
        x = x + self.dropout(attn_output)
        x = self.norm2(x)
        
        # 3. 前馈网络
        ffn_output = self.ffn(x)
        x = x + self.dropout(ffn_output)
        x = self.norm3(x)
        
        return x

class Transformer(nn.Module):
    """完整的 Transformer 模型"""
    def __init__(self, src_vocab_size, tgt_vocab_size, d_model=512, num_heads=8, 
                 num_layers=6, d_ff=2048, max_seq_len=100, dropout=0.1):
        super().__init__()
        
        # 词嵌入
        self.src_embedding = nn.Embedding(src_vocab_size, d_model)
        self.tgt_embedding = nn.Embedding(tgt_vocab_size, d_model)
        
        # 位置编码
        self.positional_encoding = PositionalEncoding(d_model, max_seq_len)
        
        # 编码器堆叠
        self.encoder_layers = nn.ModuleList([
            EncoderLayer(d_model, num_heads, d_ff, dropout) 
            for _ in range(num_layers)
        ])
        
        # 解码器堆叠
        self.decoder_layers = nn.ModuleList([
            DecoderLayer(d_model, num_heads, d_ff, dropout) 
            for _ in range(num_layers)
        ])
        
        # 输出层
        self.fc_out = nn.Linear(d_model, tgt_vocab_size)
        self.dropout = nn.Dropout(dropout)
        
    def generate_mask(self, src, tgt):
        """生成源掩码和目标掩码"""
        # 源序列掩码(填充部分)
        src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
        
        # 目标序列掩码(防止看到未来信息 + 填充部分)
        tgt_pad_mask = (tgt != 0).unsqueeze(1).unsqueeze(2)
        tgt_len = tgt.size(1)
        tgt_sub_mask = torch.tril(torch.ones(tgt_len, tgt_len)).type(torch.bool)
        tgt_mask = tgt_pad_mask & tgt_sub_mask
        
        return src_mask, tgt_mask
        
    def encode(self, src, src_mask):
        """编码器前向传播"""
        x = self.src_embedding(src)
        x = self.positional_encoding(x)
        x = self.dropout(x)
        
        for layer in self.encoder_layers:
            x = layer(x, src_mask)
            
        return x
        
    def decode(self, tgt, encoder_output, src_mask, tgt_mask):
        """解码器前向传播"""
        x = self.tgt_embedding(tgt)
        x = self.positional_encoding(x)
        x = self.dropout(x)
        
        for layer in self.decoder_layers:
            x = layer(x, encoder_output, src_mask, tgt_mask)
            
        return x
        
    def forward(self, src, tgt):
        # 生成掩码
        src_mask, tgt_mask = self.generate_mask(src, tgt[:, :-1])
        
        # 编码器
        encoder_output = self.encode(src, src_mask)
        
        # 解码器(输入偏移一位)
        decoder_output = self.decode(tgt[:, :-1], encoder_output, src_mask, tgt_mask)
        
        # 输出投影
        output = self.fc_out(decoder_output)
        return output

def test_transformer():
    """测试函数"""
    # 超参数
    src_vocab_size = 100
    tgt_vocab_size = 100
    batch_size = 4
    src_len = 10
    tgt_len = 10
    
    # 创建模型
    model = Transformer(
        src_vocab_size=src_vocab_size,
        tgt_vocab_size=tgt_vocab_size,
        d_model=128,  # 减小维度以便快速测试
        num_heads=4,
        num_layers=2,
        d_ff=512,
        max_seq_len=20
    )
    
    # 创建随机输入
    src = torch.randint(1, src_vocab_size, (batch_size, src_len))
    tgt = torch.randint(1, tgt_vocab_size, (batch_size, tgt_len))
    
    # 前向传播
    output = model(src, tgt)
    
    print("模型结构测试通过!")
    print(f"输入源序列形状: {src.shape}")
    print(f"输入目标序列形状: {tgt.shape}")
    print(f"输出形状: {output.shape}")  # 应该是 [batch_size, tgt_len-1, tgt_vocab_size]
    print(f"参数数量: {sum(p.numel() for p in model.parameters()):,}")
    
    return model, output

def generate_square_subsequent_mask(sz):
    """生成后续掩码(用于推理时)"""
    mask = torch.triu(torch.ones(sz, sz) * float('-inf'), diagonal=1)
    return mask

def greedy_decode(model, src, max_len, start_token, end_token, device):
    """贪心解码(简化推理过程)"""
    model.eval()
    src_mask = (src != 0).unsqueeze(1).unsqueeze(2)
    
    with torch.no_grad():
        # 编码
        memory = model.encode(src, src_mask)
        
        # 初始化目标序列
        ys = torch.ones(1, 1).fill_(start_token).type(torch.long).to(device)
        
        for i in range(max_len-1):
            # 生成目标掩码
            tgt_mask = generate_square_subsequent_mask(ys.size(1)).to(device)
            
            # 解码
            out = model.decode(ys, memory, src_mask, tgt_mask)
            prob = model.fc_out(out[:, -1])
            next_word = prob.argmax(dim=-1, keepdim=True)
            
            ys = torch.cat([ys, next_word], dim=1)
            
            if next_word.item() == end_token:
                break
                
    return ys

# 运行测试
if __name__ == "__main__":
    # 1. 测试模型
    model, output = test_transformer()
    
    # 2. 查看注意力权重示例
    print("\n=== 注意力机制测试 ===")
    
    # 创建一个小型多头注意力
    d_model = 64
    num_heads = 4
    attn = MultiHeadAttention(d_model, num_heads)
    
    # 测试输入
    batch_size = 2
    seq_len = 5
    Q = torch.randn(batch_size, seq_len, d_model)
    K = torch.randn(batch_size, seq_len, d_model)
    V = torch.randn(batch_size, seq_len, d_model)
    
    # 前向传播
    output, attn_weights = attn(Q, K, V)
    print(f"注意力输出形状: {output.shape}")
    print(f"注意力权重形状: {attn_weights.shape}")
    print(f"注意力权重(第一个头,第一个批次):")
    print(attn_weights[0, 0].detach().numpy().round(3))
    
    # 3. 位置编码可视化
    print("\n=== 位置编码示例 ===")
    pe = PositionalEncoding(d_model=16, max_len=20)
    sample_input = torch.zeros(1, 10, 16)
    encoded = pe(sample_input)
    print(f"位置编码后形状: {encoded.shape}")
    print("前5个位置的前4个维度的正弦值:", 
          encoded[0, :5, :4].detach().numpy())

图片
图片

posted @ 2026-01-29 11:52  jiftle  阅读(2)  评论(0)    收藏  举报