POJ 1811
使用Pollard_rho算法就可以过了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <stdlib.h>
#include <time.h>
#define LL __int64
using namespace std;
LL ans;
const LL C=201;
LL random(LL n){
return (LL)((double)rand()/RAND_MAX*n+0.5);
}
LL gcd(LL a,LL b){
if(b==0) return a;
return gcd(b,a%b);
}
LL multi(LL a,LL b,LL m){ a*b%m这个函数写得真心好,很好地避免了超出范围的情 况
LL ret=0;
while(b>0){
if(b&1)
ret=(ret+a)%m;
b>>=1;
a=(a<<1)%m;
}
return ret;
}
LL Pollard_rho(LL n, LL c){
LL x,y,d,i=1,k=2;
x=random(n-1)+1;
y=x;
while(true){
i++;
x=(multi(x,x,n)+c)%n;
d=gcd(y-x,n);
if(d>1&&d<n) return d;
if(y==x) return n;
if(i==k){
y=x;
k=k<<1;
}
}
}
LL quick(LL a,LL k,LL m){
LL ans=1;
a%=m;
while(k){
if(k&1){
ans=multi(ans,a,m);
}
k=k>>1;
a=multi(a,a,m); // 这里如果不写函数直接乘会超范围
}
return ans;
}
bool Witness(LL a, LL n){
LL m=n-1;
int j=0;
while(!(m&1)){
j++;
m=m>>1;
}
LL x= quick(a,m,n);
if(x==1||x==n-1)
return false;
while(j--){
x=multi(x,x,n);
if(x==n-1)
return false;
}
return true;
}
bool Miller_Rabin(LL n){
if(n<2) return false;
if(n==2) return true;
if(!(n&1)) return false;
for(int i=1;i<=10;i++){
LL a=random(n-2)+1;
if(Witness(a,n)) return false;
}
return true;
}
void find(LL n){
if(n==1) return ;
if(Miller_Rabin(n)){
if(n<ans)
ans=n;
return ;
}
LL p=n;
while(p>=n)
p=Pollard_rho(p,random(n-2)+1);
find(p);
find(n/p);
}
int main(){
LL n; int T;
srand(time(0));
scanf("%d",&T);
while(T--){
scanf("%I64d",&n);
if(Miller_Rabin(n)){
printf("Prime\n");
continue;
}
ans=(1LL<<60);
find(n);
printf("%I64d\n",ans);
}
return 0;
}

浙公网安备 33010602011771号