ZOJ 3209
精确覆盖
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std;
const int maxn=920;
const int maxnode=920*550;
const int maxr=550;
int ans;
struct DLX
{
int n , sz; // 行数,节点总数
int S[maxn]; // 各列节点总数
int row[maxnode],col[maxnode]; // 各节点行列编号
int L[maxnode],R[maxnode],U[maxnode],D[maxnode]; // 十字链表
int ansd; // 解
void init(int n )
{
this->n = n ;
for(int i = 0 ; i <= n; i++ )
{
U[i] = i ;
D[i] = i ;
L[i] = i - 1;
R[i] = i + 1;
}
R[n] = 0 ;
L[0] = n;
sz = n + 1 ;
memset(S,0,sizeof(S));
}
void addRow(int r,vector<int> c1)
{
int first = sz;
for(int i = 0 ; i < c1.size(); i++ ){
int c = c1[i];
L[sz] = sz - 1 ; R[sz] = sz + 1 ; D[sz] = c ; U[sz] = U[c];
D[U[c]] = sz; U[c] = sz;
row[sz] = r; col[sz] = c;
S[c] ++ ; sz ++ ;
}
R[sz - 1] = first ; L[first] = sz - 1;
}
// 顺着链表A,遍历除s外的其他元素
#define FOR(i,A,s) for(int i = A[s]; i != s ; i = A[i])
void remove(int c){
L[R[c]] = L[c];
R[L[c]] = R[c];
FOR(i,D,c)
FOR(j,R,i) {U[D[j]] = U[j];D[U[j]] = D[j];--S[col[j]];}
}
void restore(int c){
FOR(i,U,c)
FOR(j,L,i) {++S[col[j]];U[D[j]] = j;D[U[j]] = j; }
L[R[c]] = c;
R[L[c]] = c;
}
void dfs(int d){
if(d>=ans) return ;
if(R[0] == 0 ){
ansd = d;
ans=min(ans,ansd);
}
// 找S最小的列c
int c = R[0] ;
FOR(i,R,0) if(S[i] < S[c]) c = i;
remove(c);
FOR(i,D,c){
FOR(j,R,i) remove(col[j]);
dfs(d + 1);
FOR(j,L,i) restore(col[j]);
}
restore(c);
}
bool solve(){
dfs(0);
}
};
DLX solver;
int main(){
int T; int n,m ,p; int xx1,xx2,yy1,yy2;
vector<int>colmuns;
scanf("%d",&T);
while(T--){
ans=(1<<30);
scanf("%d%d%d",&n,&m,&p);
solver.init(n*m);
for(int k=1;k<=p;k++){
colmuns.clear();
scanf("%d%d%d%d",&xx1,&yy1,&xx2,&yy2);
for(int i=xx1+1;i<=xx2;i++){
for(int j=yy1+1;j<=yy2;j++){
colmuns.push_back((i-1)*m+j);
}
}
solver.addRow(k,colmuns);
}
solver.solve();
if(ans==(1<<30)) printf("-1\n");
else printf("%d\n",ans);
}
return 0;
}

浙公网安备 33010602011771号