HDU 2912
直线关于球的多次反射,求最后一次反射点
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const double inf=1e10;
const double eps=1e-8;
struct point {
double x,y,z;
// point (double _x,double _y,double _z){ x=_x; y=_y; z=_z; };
};
struct sphe {
point cent;
double r;
};
struct vect {
point st,des;
};
sphe cir[110];
vect livc;
int n;
point operator -(const point &u,const point &v){
point ret;
ret.x=u.x-v.x; ret.y=u.y-v.y; ret.z=u.z-v.z;
return ret;
}
double dot(point x,point y){
return x.x*y.x+x.y*y.y+x.z*y.z;
}
point xmulti(point u,point v){
point ret;
ret.x=(u.y*v.z-v.y*u.z);
ret.y=(u.z*v.x-u.x*v.z);
ret.z=(u.x*v.y-u.y*v.x);
return ret;
}
double dis(point x,point y){
return sqrt((x.x-y.x)*(x.x-y.x)+(x.y-y.y)*(x.y-y.y)+(x.z-y.z)*(x.z-y.z));
}
double vlen(point x){
return sqrt(x.x*x.x+x.y*x.y+x.z*x.z);
}
point construct(){
point crop;
crop.x=crop.y=crop.z=0;
double stoc=inf; point tmpcrop; point foot,tmpfoot; bool flag; point tmp; int k;
while(true){
flag=false; stoc=inf;
for(int i=0;i<n;i++){
if(dot(livc.des-livc.st,cir[i].cent-livc.st)>=-eps){//判断圆是否与直线同向,通过点积判方向
double D=vlen(xmulti(livc.des-livc.st,cir[i].cent-livc.st))/dis(livc.st,livc.des);
// cout<<D<<' '<<i<<endl;
if(D-cir[i].r<=eps){ //半径小于D,相交
flag=true;
// cout<<"YES"<<endl;
double u=dot(cir[i].cent-livc.st,livc.des-livc.st)/(dis(livc.st,livc.des)*dis(livc.st,livc.des));
//计算垂足。可通过向量的比例所得方程,联合垂直点积为0的方程解得
tmpfoot=livc.st;
tmpfoot.x+=u*(livc.des.x-livc.st.x);
tmpfoot.y+=u*(livc.des.y-livc.st.y);
tmpfoot.z+=u*(livc.des.z-livc.st.z);
// cout<<tmpfoot.x<<' '<<tmpfoot.y<<' '<<tmpfoot.z<<' '<<endl;
u=sqrt((cir[i].r*cir[i].r-D*D))/dis(livc.st,livc.des); //计算交点。垂足到圆上交点方向与直线反方向相同
//通过两者距离比计算出向量的转化
tmpcrop=tmpfoot;
tmp=livc.st-livc.des;
tmpcrop.x+=tmp.x*u;
tmpcrop.y+=tmp.y*u;
tmpcrop.z+=tmp.z*u;
D=dis(tmpcrop,livc.st);
// cout<<D<<endl;
if(D<stoc){ //若与多个圆相交,选取较近的一个
stoc=D; crop=tmpcrop;
k=i;
}
}
}
}
if(!flag) return crop;
double tu=dot(livc.st-cir[k].cent,crop-cir[k].cent)/(dis(crop,cir[k].cent)*dis(crop,cir[k].cent));
tmpfoot=cir[k].cent; //计算反射线。直线st点关于交点与球心的直线 对称点作为反射线的des点
tmpfoot.x+=tu*(crop.x-cir[k].cent.x);
tmpfoot.y+=tu*(crop.y-cir[k].cent.y);
tmpfoot.z+=tu*(crop.z-cir[k].cent.z); //知直线st点到反射线des点的方向与st点到关于对称线垂足方向相同且为两倍
livc.des.x=((tmpfoot.x-livc.st.x)*2+livc.st.x); //通过这样可以求对称点
livc.des.y=((tmpfoot.y-livc.st.y)*2+livc.st.y);
livc.des.z=((tmpfoot.z-livc.st.z)*2+livc.st.z);
livc.st=crop;
// cout<<livc.des.x<<' '<<livc.des.x<<' '<<livc.des.x<<endl;
}
}
int main(){
point tmp; double r;
while(scanf("%d",&n),n){
livc.st.x=livc.st.y=livc.st.z=0;
scanf("%lf%lf%lf",&tmp.x,&tmp.y,&tmp.z);
livc.des=tmp;
for(int i=0;i<n;i++){
scanf("%lf%lf%lf%lf",&cir[i].cent.x,&cir[i].cent.y,&cir[i].cent.z,&cir[i].r);
}
tmp=construct();
printf("%.4lf %.4lf %.4lf\n",tmp.x,tmp.y,tmp.z);
}
}

浙公网安备 33010602011771号