/*半平面交求核心的增量法:
假设前N-1个半平面交,对于第N个半平面,只需用它来交前N-1个平面交出的多边形。
算法开始时,调整点的方向为顺时针方向,对于是否为顺时针,只需求出其面积,若为正,必为逆时针的。
对于每相邻两点求出一条直线,用该直线去交其半平面,并求出交点及判断原多边形点的方位。
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
const int MAXN=110;
const double eps=1e-8;
struct point {
double x,y;
};
point pts[MAXN],p[MAXN],q[MAXN];
int n,cCnt,curCnt;
int DB(double d){
if(d>eps) return 1;
if(d<-eps) return -1;
return 0;
}
double getArea(point *tmp, int n){
double ans=0;
for(int i=1;i<=n;i++)
ans+=(tmp[i].x*tmp[i+1].y-tmp[i].y*tmp[i+1].x);
return ans/2;
}
void Adjust(point *ps,int n){
for(int i = 1; i < (n+1)/2; i ++)
swap(ps[i], ps[n-i]);
}
void initial(){
double area=getArea(pts,n);
if(DB(area)==1) Adjust(pts,n);
for(int i=1;i<=n;i++)
p[i]=pts[i];
p[n+1]=p[1];
p[0]=p[n];
cCnt=n;
}
void getline(point x,point y,double &a,double &b,double &c){
a = y.y - x.y;
b = x.x - y.x;
c = y.x * x.y - x.x * y.y;
}
point intersect(point x,point y,double a,double b,double c){
double u = fabs(a * x.x + b * x.y + c);
double v = fabs(a * y.x + b * y.y + c);
point pt;
pt.x=(x.x * v + y.x * u) / (u + v);
pt.y=(x.y * v + y.y * u) / (u + v);
return pt;
}
void cut(double a,double b,double c){
curCnt=0;
for(int i=1;i<=cCnt;i++){
if(DB(a*p[i].x+b*p[i].y+c)>=0) q[++curCnt] = p[i];
else {
if(DB(a*p[i-1].x + b*p[i-1].y + c )>0){
q[++curCnt] = intersect(p[i],p[i-1],a,b,c);
}
if(DB(a*p[i+1].x + b*p[i+1].y + c )> 0){
q[++curCnt] = intersect(p[i],p[i+1],a,b,c);
}
}
}
for(int i = 1; i <= curCnt; ++i)p[i] = q[i];
p[curCnt+1] = q[1];p[0] = p[curCnt];
cCnt = curCnt;
}
void slove(){
initial();
for(int i=1;i<=n;i++){
double a,b,c;
getline(pts[i],pts[i+1],a,b,c);
cut(a,b,c);
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d",&n);
for(int i=1;i<=n;i++)
scanf("%lf%lf",&pts[i].x,&pts[i].y);
pts[n+1]=pts[1];
slove();
if(cCnt>=1) printf("YES\n");
else printf("NO\n");
}
return 0;
}