R 《回归分析与线性统计模型》page120,4.3
#P120习题4.3
rm(list = ls())
A = read.xlsx("xiti_4.xlsx",sheet = 3)
names(A) = c("ord","Y","K","L")
attach(A)
fm = lm(Y~log(K)+log(L))#线性回归模型
ei = resid(fm)
X = cbind(1,as.matrix(A[,3:4]))
t = ti(ei,X) #外部学生化残差
plot(fitted(fm),t) #绘制残差图

从残差图中看出来,方差不齐
a1 = boxcox(fm,lambda = seq(0,1,by=0.1))

从图像中看出,λ可取0,即进行对数变换
#进行对数变换 lm.log = lm(log(Y)~log(L)+log(K)) coef(lm.log) summary(lm.log) detach(A)
> summary(lm.log)
Call:
lm(formula = log(Y) ~ log(L) + log(K))
Residuals:
Min 1Q Median 3Q Max
-1.7251 -0.1764 -0.0059 0.1707 1.3035
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.38004 0.26873 1.414 0.166
log(L) 0.05699 0.04471 1.275 0.211
log(K) 0.93065 0.04131 22.526 <2e-16 ***
---
Signif. codes:
0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 0.441 on 35 degrees of freedom
Multiple R-squared: 0.944, Adjusted R-squared: 0.9408
F-statistic: 295 on 2 and 35 DF, p-value: < 2.2e-16

浙公网安备 33010602011771号