学习JUC源码(2)——自定义同步组件

前言

  在之前的博文(学习JUC源码(1)——AQS同步队列(源码分析结合图文理解))中,已经介绍了AQS同步队列的相关原理与概念,这里为了再加深理解ReentranLock等源码,模仿构造同步组件的基本模式,编写不可重入的互斥锁Mutex与指定共享线程数量的共享锁。MySharedLock。

  主要参考资料《Java并发编程艺术》(有需要的小伙伴可以找我,我这里只有电子PDF)同时结合ReentranLock、AQS等源码。

 


 

一、构造同步组件的模式

丛概念方层面,在中,我们知道锁与同步器的相关概念:

  • 同步器是实现锁的关键,在锁的实现中聚合同步器,利用同步器实现锁的语义;
  • 锁是面向使用者的,提供锁交互的实现;
  • 同步器是面向锁的实现者,简化了锁的实现方式,屏蔽了同步状态管理、线程排队、等待/唤醒等底层操作。

从代码层面,同步器是基于模板模式实现的,可以通过可重写的方法中的随便一个窥探:

  /**
     * 模板方法:
     *  protected关键字
     *  没有任何实现
     * @param arg
     * @return
     */
    protected boolean tryAcquire(int arg) {
        throw new UnsupportedOperationException();
    }

也就是需要进行以下几步:

1)继承同步器重写指定方法(idea中extends AQS点击快捷键ctrl+O即可显示)

  • tryAcquire(int arg):独占式获取同步状态;
  • tryRelease(int arg):独占式释放同步状态;
  • tryAcquireShared(int arg):共享式获取同步状态,返回大于0的值表示获取成功,否则失败
  • tryReleaseShared(int arg):共享式释放锁
  • isHeldExclusively():当前线程是否在独占模式下被线程占用,一般该方法表示是否被当前线程占用

2)随后将同步器组合在自定义同步组件的实现中,即定义内部类Syn继承AQS,在Syn中重写AQS方法:

public class Sync extends AbstractQueuedSynchronizer{
        @Override
        protected boolean tryAcquire(int arg) {
            final Thread current = Thread.currentThread();
            if (compareAndSetState(0, 1)) {
                // 获取成功之后,当前线程是该锁的持有者,不需要再可重入数
                setExclusiveOwnerThread(current);
                return true;
            }
            return false;
        }

        @Override
        protected boolean tryRelease(int arg) {
            if (getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        @Override
        protected boolean isHeldExclusively() {
              return getState() == 1;
        }
        // 返回Condition,每个Condition都包含了一个队列
        Condition newCondition() {
            return new ConditionObject();
        }
    }

3)最后调用同步器提供的模板方法,即同步组件类实现Lock方法之后,在lock/unlock方法中调用内部类Syn的方法acquire(int arg)等方法

public class Mutex implements Lock {
    
   ........
    @Override
    public void lock() {
        sync.acquire(1);
    }
    @Override
    public void unlock() {
        sync.release(1);
    }
    ........

}

具体请看下面的实践部分

二、互斥不可重入锁

 在我之前写过的博文中(详解Java锁的升级与对比(1)——锁的分类与细节(结合部分源码))介绍可重入锁与不可重入锁的区别时,就写到JUC中没有不可重入锁的具体实现,但是可以类比,现在呢,我们可以做到实现了,具体看下面代码,模式完全符合依赖Lock与AQS构造同步组件模式。

(1)Mutex代码实现(核心关键实现已经在代码中注释)

public class Mutex implements Lock {

    private final Sync sync = new Sync();
    public class Sync extends AbstractQueuedSynchronizer{
        @Override
        protected boolean tryAcquire(int arg) {
            final Thread current = Thread.currentThread();
            if (compareAndSetState(0, 1)) {
                // 获取成功之后,当前线程是该锁的持有者,不需要再可重入数
                setExclusiveOwnerThread(current);
                return true;
            }
            return false;
        }

        @Override
        protected boolean tryRelease(int arg) {
            if (getState() == 0) {
                throw new IllegalMonitorStateException();
            }
            setExclusiveOwnerThread(null);
            setState(0);
            return true;
        }

        @Override
        protected boolean isHeldExclusively() {
              return getState() == 1;
        }
        // 返回Condition,每个Condition都包含了一个队列
        Condition newCondition() {
            return new ConditionObject();
        }
    }


    @Override
    public void lock() {
        sync.acquire(1);
    }
    @Override
    public void unlock() {
        sync.release(1);
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {

    }

    @Override
    public boolean tryLock() {
        return false;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return false;
    }



    @Override
    public Condition newCondition() {
        return null;
    }
}

其中核心代码就是重写的两个方法:

  • tryAcquire(int arg)方法:主要是设置同独占式更新同步状态,CAS实现state+1
  • tryRelease(int arg)方法:独占式释放同步状态,释放锁持有 

(2)测试Demo

public class MutexDemo {

    @Test
    public void test(){
        final Mutex lock = new Mutex();
        class Worker extends Thread {
            @Override
            public void run() {
                // 一直不停在获取锁
                while (true) {
                    lock.lock();
                    try {
                        System.out.println(Thread.currentThread().getName() +" hold lock, "+new Date());
                        Thread.sleep(1000);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    } finally {
                        lock.unlock();
                        System.out.println(Thread.currentThread().getName() +" release lock, "+new Date());
                    }
                }
            }

        }
        for (int i = 0; i < 10; i++) {
            Worker worker = new Worker();
            // 以守护进程运行,VM退出不影响运行,这里只是为了一个打印效果,去掉注释一直打印
            worker.setDaemon(true);
            worker.start();
        }
        // 每隔一秒换行
        for (int j = 0; j < 10; j++) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println();
        }
    }
}

(3)运行结果

Thread-0 hold lock, Tue Dec 08 16:26:42 CST 2020

Thread-0 release lock, Tue Dec 08 16:26:43 CST 2020
Thread-1 hold lock, Tue Dec 08 16:26:43 CST 2020

Thread-2 hold lock, Tue Dec 08 16:26:44 CST 2020
Thread-1 release lock, Tue Dec 08 16:26:44 CST 2020

Thread-3 hold lock, Tue Dec 08 16:26:45 CST 2020
Thread-2 release lock, Tue Dec 08 16:26:45 CST 2020

Thread-3 release lock, Tue Dec 08 16:26:46 CST 2020
Thread-4 hold lock, Tue Dec 08 16:26:46 CST 2020

Thread-4 release lock, Tue Dec 08 16:26:47 CST 2020
Thread-6 hold lock, Tue Dec 08 16:26:47 CST 2020

Thread-7 hold lock, Tue Dec 08 16:26:48 CST 2020
Thread-6 release lock, Tue Dec 08 16:26:48 CST 2020

Thread-7 release lock, Tue Dec 08 16:26:49 CST 2020
Thread-5 hold lock, Tue Dec 08 16:26:49 CST 2020

Thread-8 hold lock, Tue Dec 08 16:26:50 CST 2020
Thread-5 release lock, Tue Dec 08 16:26:50 CST 2020

Thread-8 release lock, Tue Dec 08 16:26:51 CST 2020
Thread-9 hold lock, Tue Dec 08 16:26:51 CST 2020

(4)结果分析

互斥锁的核心就是同一个同步状态只能被一个线程持有,其它线程等待持有线程释放才能竞争获取。截图一开始的运行结果分析:

Thread-0 hold lock, Tue Dec 08 16:26:42 CST 2020

Thread-0 release lock, Tue Dec 08 16:26:43 CST 2020
Thread-1 hold lock, Tue Dec 08 16:26:43 CST 2020

Thread-2 hold lock, Tue Dec 08 16:26:44 CST 2020
Thread-1 release lock, Tue Dec 08 16:26:44 CST 2020

10个线程不断竞争锁,一开始Thread-0在08 16:26:42获取到锁,持有锁1秒后在释放16:26:43时释放,同时Thread-1立马获取到锁,1秒后于16:26:44释放锁,同时Thread-2立马获取到了锁......

根据输出结果来说,完全符合Mutex作为互斥锁这个功能:同一时刻只有一个线程持有锁(同步状态),其它线程等待释放后才能获取

三、指定共享线程数目的共享锁

(1)代码实现(核心关键实现已经在代码中注释)

public class MyShareLock implements Lock {

    // 可以看到共享等待队列中的线程
    public Collection<Thread> getSharedQueuedThreads(){
        return syn.getSharedQueuedThreads();
    }
    private final Syn syn = new Syn(2);

    private static final class Syn extends AbstractQueuedSynchronizer{
        int newShareCount=0;
        Syn(int shareCount){
            if (shareCount <= 0) {
                throw new IllegalArgumentException("share count must large than zero");
            }
            // 设置初始共享同步状态
            setState(shareCount);
        }

        /**
         * 共享锁指定数目
         * @param reduceShareCount
         * @return
         */
        @Override
        protected int tryAcquireShared(int reduceShareCount) {

            for (;;){
                int currentShareCount = getState();
                newShareCount = currentShareCount- reduceShareCount;
                if (newShareCount < 0 ||
                        compareAndSetState(currentShareCount,newShareCount)) {
                    // newShareCount大于等于0才说明获取锁成功
                    if (newShareCount >= 0) {
//                        System.out.println(Thread.currentThread().getName()+" hold lock, current share count is "+newShareCount+", "+new Date());
                    }
                    // newShareCount小于0表示获取失败所以需要返回
                    // compareAndSetState(currentShareCount,newShareCount)为true自然表示成功需要返回
                    return newShareCount;
                }
            }
        }

        @Override
        protected boolean tryReleaseShared(int returnShareCount) {
            for (;;){
                int currentShareCount = getState();
                newShareCount = currentShareCount + returnShareCount;
                if (compareAndSetState(currentShareCount,newShareCount)) {
//                    System.out.println(Thread.currentThread().getName() +" release lock, current share count is "+newShareCount+", "+new Date());
                    return true;
                }
            }
        }
        protected int getShareCount(){
            return getState();
        }
    }

    /**
     * 调用内部同步器Syn的acquireShare方法
     */
    @Override
    public void lock() {
        syn.acquireShared(1);
    }
    /**
     * 调用内部同步器Syn的releaseShared方法
     */
    @Override
    public void unlock() {
        syn.releaseShared(1);
    }

    @Override
    public void lockInterruptibly() throws InterruptedException {
        if (Thread.interrupted()) {
            throw new IllegalStateException();
        }
        syn.acquireInterruptibly(1);
    }

    @Override
    public boolean tryLock() {
        return false;
    }

    @Override
    public boolean tryLock(long time, TimeUnit unit) throws InterruptedException {
        return false;
    }


    @Override
    public Condition newCondition() {
        return null;
    }
}

(2)测试Demo

public class ShareLockTest {

    @Test
    public void test(){
        final MyShareLock lock = new MyShareLock();
        class Worker extends Thread {
            @Override
            public void run() {
                // 一直不停在获取锁
            while (true) {
                lock.lock();
                try {
                    System.out.println(Thread.currentThread().getName() +" hold lock, "+new Date());
//                    System.out.println(lock.getSharedQueuedThreads());
                    Thread.sleep(1000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    lock.unlock();
                    System.out.println(Thread.currentThread().getName() +" release lock, "+new Date());
                }
            }
            }

        }
        for (int i = 0; i < 10; i++) {
            Worker worker = new Worker();
            // 以守护进程运行,VM退出不影响运行,这里只是为了一个打印效果,去掉注释一直打印
            worker.setDaemon(true);
            worker.start();
        }
        // 每隔一秒换行
        for (int j = 0; j < 10; j++) {
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                e.printStackTrace();
            }
            System.out.println();
        }
    }
}

(3)运行结果(结果可能不同)

Thread-1 hold lock, Tue Dec 08 16:36:05 CST 2020
Thread-0 hold lock, Tue Dec 08 16:36:05 CST 2020

Thread-0 release lock, Tue Dec 08 16:36:06 CST 2020
Thread-4 hold lock, Tue Dec 08 16:36:06 CST 2020
Thread-1 release lock, Tue Dec 08 16:36:06 CST 2020
Thread-2 hold lock, Tue Dec 08 16:36:06 CST 2020

Thread-4 release lock, Tue Dec 08 16:36:07 CST 2020
Thread-2 release lock, Tue Dec 08 16:36:07 CST 2020
Thread-5 hold lock, Tue Dec 08 16:36:07 CST 2020
Thread-8 hold lock, Tue Dec 08 16:36:07 CST 2020

Thread-8 release lock, Tue Dec 08 16:36:08 CST 2020
Thread-3 hold lock, Tue Dec 08 16:36:08 CST 2020
Thread-9 hold lock, Tue Dec 08 16:36:08 CST 2020
Thread-5 release lock, Tue Dec 08 16:36:08 CST 2020

Thread-6 hold lock, Tue Dec 08 16:36:09 CST 2020
Thread-7 hold lock, Tue Dec 08 16:36:09 CST 2020
Thread-3 release lock, Tue Dec 08 16:36:09 CST 2020
Thread-9 release lock, Tue Dec 08 16:36:09 CST 2020

Thread-6 release lock, Tue Dec 08 16:36:10 CST 2020
Thread-1 hold lock, Tue Dec 08 16:36:10 CST 2020
Thread-0 hold lock, Tue Dec 08 16:36:10 CST 2020
Thread-7 release lock, Tue Dec 08 16:36:10 CST 2020

Thread-1 release lock, Tue Dec 08 16:36:11 CST 2020
Thread-2 hold lock, Tue Dec 08 16:36:11 CST 2020
Thread-0 release lock, Tue Dec 08 16:36:11 CST 2020
Thread-4 hold lock, Tue Dec 08 16:36:11 CST 2020

Thread-2 release lock, Tue Dec 08 16:36:12 CST 2020
Thread-8 hold lock, Tue Dec 08 16:36:12 CST 2020
Thread-5 hold lock, Tue Dec 08 16:36:12 CST 2020
Thread-4 release lock, Tue Dec 08 16:36:12 CST 2020

Thread-5 release lock, Tue Dec 08 16:36:13 CST 2020
Thread-9 hold lock, Tue Dec 08 16:36:13 CST 2020
Thread-3 hold lock, Tue Dec 08 16:36:13 CST 2020
Thread-8 release lock, Tue Dec 08 16:36:13 CST 2020

Thread-3 release lock, Tue Dec 08 16:36:14 CST 2020
Thread-7 hold lock, Tue Dec 08 16:36:14 CST 2020
Thread-9 release lock, Tue Dec 08 16:36:14 CST 2020
Thread-6 hold lock, Tue Dec 08 16:36:14 CST 2020

(4)结果分析

该指定共享线程数量N的共享锁的最终目的就是多个线程可以持有锁(同步状态),达到共享线程数量N(代码中默认为2)时,其它线程将进入Queue等待获取同步结果,同一时刻只能最多有N个线程持有锁

同样地,我们分析开头运行结果:

Thread-1 hold lock, Tue Dec 08 16:36:05 CST 2020
Thread-0 hold lock, Tue Dec 08 16:36:05 CST 2020

Thread-0 release lock, Tue Dec 08 16:36:06 CST 2020
Thread-4 hold lock, Tue Dec 08 16:36:06 CST 2020
Thread-1 release lock, Tue Dec 08 16:36:06 CST 2020
Thread-2 hold lock, Tue Dec 08 16:36:06 CST 2020

10个线程不停竞争锁,一开始Thread-0与Thread-1在16:36:05时刻同时获取到了锁,此时已经达到共享数量的最大值,即N,之后持有锁1秒,Thread-0与Thread-1在16:36:06时刻立马释放锁,同时Thread-4与Thread-2立马退出等待队列立马竞争持有锁。

从结果来看,完全是符合ShareLock共享锁功能的:同一时刻最多允许N个线程持有锁,其它线程等待持有线程释放锁

 

posted @ 2020-12-08 17:03  JJian  阅读(579)  评论(0编辑  收藏  举报