DataFrame创建
今天本来想要进行Spark基础实验五。但是通过观看实验要求,我发现里面涉及到编程实现将 RDD 转换为 DataFrame这一过程,对于DataFrame我并不了解,于是通过查找网络资料。找到了以下相关内容。
参考博客:https://www.cnblogs.com/flw0322/p/12284701.html
DataFrame
从Spark2.0以上版本开始,Spark使用全新的SparkSession接口替代Spark1.6中的SQLContext及HiveContext接口来实现其对数据加载、转换、处理等功能。SparkSession实现了SQLContext及HiveContext所有功能
SparkSession支持从不同的数据源加载数据,并把数据转换成DataFrame,并且支持把DataFrame转换成SQLContext自身中的表,然后使用SQL语句来操作数据。SparkSession亦提供了HiveQL以及其他依赖于Hive的功能的支持
可以通过如下语句创建一个SparkSession对象:
scala> import org.apache.spark.sql.SparkSession
scala> val spark=SparkSession.builder().getOrCreate()
在创建DataFrame之前,为了支持RDD转换为DataFrame及后续的SQL操作,需要通过import语句(即import spark.implicits._)导入相应的包,启用隐式转换。
在创建DataFrame时,可以使用spark.read操作,从不同类型的文件中加载数据创建DataFrame,例如
spark.read.json("people.json"):读取people.json文件创建DataFrame;在读取本地文件或HDFS文件时,要注意给出正确的文件路径; spark.read.parquet("people.parquet"):读取people.parquet文件创建DataFrame; spark.read.csv("people.csv"):读取people.csv文件创建DataFrame。
在“/export/server/spark/examples/src/main/resources/”这个目录下,这个目录下有两个样例数据people.json和people.txt。people.json文件的内容如下:
{"name":"Michael"}
{"name":"Andy", "age":30}
{"name":"Justin", "age":19}
people.txt文件的内容如下:
Michael, 29
Andy, 30
Justin, 19
scala> import org.apache.spark.sql.SparkSession import org.apache.spark.sql.SparkSession scala> val spark=SparkSession.builder().getOrCreate() spark: org.apache.spark.sql.SparkSession = org.apache.spark.sql.SparkSession@2bdab835 //使支持RDDs转换为DataFrames及后续sql操作 scala> import spark.implicits._ import spark.implicits._ scala> val df = spark.read.json("file:///export/server/spark/examples/src/main/resources/people.json") df: org.apache.spark.sql.DataFrame = [age: bigint, name: string] scala> df.show() +----+-------+ | age| name| +----+-------+ |null|Michael| | 30| Andy| | 19| Justin| +----+-------+
DataFrame的保存
可以使用spark.write操作,把一个DataFrame保存成不同格式的文件,例如,把一个名称为df的DataFrame保存到不同格式文件中,方法如下:
df.write.json("people.json“) df.write.parquet("people.parquet“) df.write.csv("people.csv")
从示例文件people.json中创建一个DataFrame,然后保存成csv格式文件,代码如下:
scala> val peopleDF = spark.read.format("json").load("file:///export/server/spark/examples/src/main/resources/people.json") scala> peopleDF.select("name", "age").write.format("csv").save("file:///export/server/spark/mycode/sql/newpeople.csv")
DataFrame的常用操作
//打印模式信息 scala> df.printSchema() root |-- age: long (nullable = true) |-- name: string (nullable = true) //选择多列 scala> df.select(df("name"),df("age"+1).show) //条件过滤 scala> df.filter(df("age") > 20).show() //分组聚合 scala> df.groupBy("age").count().show() //排序 scala> df.sort(df("age").desc).show() //多列排序 scala> df.sort(df.("age").desc,df("name").asc).show() //对列进行重命名 scala> df.select(df("name").as("username"),df("age")).show()
在“/export/server/spark/examples/src/main/resources/”目录下,有个Spark安装时自带的样例数据people.txt,其内容如下:
Michael, 29
Andy, 30
Justin, 19
现在要把people.txt加载到内存中生成一个DataFrame,并查询其中的数据
在利用反射机制推断RDD模式时,需要首先定义一个case class,因为,只有case class才能被Spark隐式地转换为DataFrame
|
|
scala> import org.apache.spark.sql.catalyst.encoders.ExpressionEncoderimport org.apache.spark.sql.catalyst.encoders.ExpressionEncoderscala> import org.apache.spark.sql.Encoderimport org.apache.spark.sql.Encoderscala> import spark.implicits._ //导入包,支持把一个RDD隐式转换为一个DataFrameimport spark.implicits._scala> case class Person(name: String, age: Long) //定义一个case classdefined class Personscala> val peopleDF = spark.sparkContext.textFile("file:///export/server/spark/examples/src/main/resources/people.txt").map(_.split(",")).map(attributes => Person(attributes(0), attributes(1).trim.toInt)).toDF()peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: bigint]scala> peopleDF.createOrReplaceTempView("people") //必须注册为临时表才能供下面的查询使用scala> val personsRDD = spark.sql("select name,age from people where age > 20")//最终生成一个DataFrame,下面是系统执行返回的信息personsRDD: org.apache.spark.sql.DataFrame = [name: string, age: bigint]scala> personsRDD.map(t => "Name: "+t(0)+ ","+"Age: "+t(1)).show() //DataFrame中的每个元素都是一行记录,包含name和age两个字段,分别用t(0)和t(1)来获取值//下面是系统执行返回的信息+------------------+| value|+------------------+|Name:Michael,Age:29|| Name:Andy,Age:30|+------------------+ |
当无法提前定义case class时,就需要采用编程方式定义RDD模式。
比如,现在需要通过编程方式把people.txt加载进来生成DataFrame,并完成SQL查询。
scala> import org.apache.spark.sql.types._import org.apache.spark.sql.types._scala> import org.apache.spark.sql.Rowimport org.apache.spark.sql.Row//生成字段scala> val fields = Array(StructField("name",StringType,true), StructField("age",IntegerType,true))fields: Array[org.apache.spark.sql.types.StructField] = Array(StructField(name,StringType,true), StructField(age,IntegerType,true))scala> val schema = StructType(fields)schema: org.apache.spark.sql.types.StructType = StructType(StructField(name,StringType,true), StructField(age, IntegerType,true))//从上面信息可以看出,schema描述了模式信息,模式中包含name和age两个字段//shcema就是“表头”//下面加载文件生成RDDscala> val peopleRDD = spark.sparkContext.textFile("file:///export/server/spark/examples/src/main/resources/people.txt")peopleRDD: org.apache.spark.rdd.RDD[String] = file:///export/server/spark/examples/src/main/resources/people.txt MapPartitionsRDD[1] at textFile at <console>:26//对peopleRDD 这个RDD中的每一行元素都进行解析scala> val rowRDD = peopleRDD.map(_.split(",")).map(attributes => Row(attributes(0), attributes(1).trim.toInt))rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[3] at map at <console>:29//上面得到的rowRDD就是“表中的记录”//下面把“表头”和“表中的记录”拼装起来scala> val peopleDF = spark.createDataFrame(rowRDD, schema)peopleDF: org.apache.spark.sql.DataFrame = [name: string, age: int]//必须注册为临时表才能供下面查询使用scala> peopleDF.createOrReplaceTempView("people")scala> val results = spark.sql("SELECT name,age FROM people")results: org.apache.spark.sql.DataFrame = [name: string, age: int]scala> results.map(attributes => "name: " + attributes(0)+","+"age:"+attributes(1)).show()+--------------------+| value|+--------------------+|name: Michael,age:29|| name: Andy,age:30|| name: Justin,age:19|+--------------------+通过JDBC连接数据库
在Linux中启动MySQL数据库
$ service mysql start
$ mysql -u root -p
#屏幕会提示你输入密码
输入下面SQL语句完成数据库和表的创建:
mysql> create database spark;mysql> use spark;mysql> create table student (id int(4), name char(20), gender char(4), age int(4));mysql> insert into student values(1,'Xueqian','F',23);mysql> insert into student values(2,'Weiliang','M',24);mysql> select * from student;下载MySQL的JDBC驱动程序,比如mysql-connector-java-5.1.40.tar.gz
把该驱动程序拷贝到spark的安装目录” /export/server/spark/jars”下
启动一个spark-shell,启动Spark Shell时,必须指定mysql连接驱动jar包
$ cd /export/server//spark
$ ./bin/spark-shell \
--jars /export/server/spark/jars/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar \
--driver-class-path /export/server/spark/jars/mysql-connector-java-5.1.40/mysql-connector-java-5.1.40-bin.jar
读取MySQL数据库中的数据
scala> val jdbcDF = spark.read.format("jdbc").| option("url","jdbc:mysql://localhost:3306/spark").| option("driver","com.mysql.jdbc.Driver").| option("dbtable", "student").| option("user", "root").| option("password", "hadoop").| load()scala> jdbcDF.show()+---+--------+------+---+| id| name|gender|age|+---+--------+------+---+| 1| Xueqian| F| 23|| 2|Weiliang| M| 24|+---+--------+------+---+向MySQL数据库写入数据
import java.util.Propertiesimport org.apache.spark.sql.types._import org.apache.spark.sql.Row //下面我们设置两条数据表示两个学生信息val studentRDD = spark.sparkContext.parallelize(Array("3 Rongcheng M 26","4 Guanhua M 27")).map(_.split(" ")) //下面要设置模式信息val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true)))//下面创建Row对象,每个Row对象都是rowRDD中的一行val rowRDD = studentRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).trim, p(3).toInt)) //建立起Row对象和模式之间的对应关系,也就是把数据和模式对应起来val studentDF = spark.createDataFrame(rowRDD, schema) //下面创建一个prop变量用来保存JDBC连接参数val prop = new Properties()prop.put("user", "root") //表示用户名是rootprop.put("password", "hadoop") //表示密码是hadoopprop.put("driver","com.mysql.jdbc.Driver") //表示驱动程序是com.mysql.jdbc.Driver //下面就可以连接数据库,采用append模式,表示追加记录到数据库spark的student表中studentDF.write.mode("append").jdbc("jdbc:mysql://localhost:3306/spark", "spark.student", prop) |
连接Hive读写数据
2.在Hive中创建数据库和表
进入Hive,新建一个数据库sparktest,并在这个数据库下面创建一个表student,并录入两条数据
|
|
hive> create database if not exists sparktest;//创建数据库sparktesthive> show databases; //显示一下是否创建出了sparktest数据库//下面在数据库sparktest中创建一个表studenthive> create table if not exists sparktest.student(> id int,> name string,> gender string,> age int);hive> use sparktest; //切换到sparktesthive> show tables; //显示sparktest数据库下面有哪些表hive> insert into student values(1,'Xueqian','F',23); //插入一条记录hive> insert into student values(2,'Weiliang','M',24); //再插入一条记录hive> select * from student; //显示student表中的记录 |
3.连接Hive读写数据
需要修改“/usr/local/sparkwithhive/conf/spark-env.sh”这个配置文件:
export SPARK_DIST_CLASSPATH=$(/usr/local/hadoop/bin/hadoop classpath)export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64export CLASSPATH=$CLASSPATH:/usr/local/hive/libexport SCALA_HOME=/usr/local/scalaexport HADOOP_CONF_DIR=/usr/local/hadoop/etc/hadoopexport HIVE_CONF_DIR=/usr/local/hive/confexport SPARK_CLASSPATH=$SPARK_CLASSPATH:/usr/local/hive/lib/mysql-connector-java-5.1.40-bin.jar |
请在spark-shell(包含Hive支持)中执行以下命令从Hive中读取数据:
|
|
Scala> import org.apache.spark.sql.RowScala> import org.apache.spark.sql.SparkSessionScala> case class Record(key: Int, value: String)// warehouseLocation points to the default location for managed databases and tablesScala> val warehouseLocation = "spark-warehouse”Scala> val spark = SparkSession.builder().appName("Spark Hive Example").config("spark.sql.warehouse.dir", warehouseLocation).enableHiveSupport().getOrCreate()Scala> import spark.implicits._Scala> import spark.sql//下面是运行结果scala> sql("SELECT * FROM sparktest.student").show()+---+--------+------+---+| id| name|gender|age|+---+--------+------+---+| 1| Xueqian| F| 23|| 2|Weiliang| M| 24|+---+--------+------+---+ |
编写程序向Hive数据库的sparktest.student表中插入两条数据:
scala> import java.util.Propertiesscala> import org.apache.spark.sql.types._scala> import org.apache.spark.sql.Row//下面我们设置两条数据表示两个学生信息scala> val studentRDD = spark.sparkContext.parallelize(Array("3 Rongcheng M 26","4 Guanhua M 27")).map(_.split(" "))//下面要设置模式信息scala> val schema = StructType(List(StructField("id", IntegerType, true),StructField("name", StringType, true),StructField("gender", StringType, true),StructField("age", IntegerType, true))) //下面创建Row对象,每个Row对象都是rowRDD中的一行scala> val rowRDD = studentRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).trim, p(3).toInt))//建立起Row对象和模式之间的对应关系,也就是把数据和模式对应起来scala> val studentDF = spark.createDataFrame(rowRDD, schema)//查看studentDFscala> studentDF.show()+---+---------+------+---+| id| name|gender|age|+---+---------+------+---+| 3|Rongcheng| M| 26|| 4| Guanhua| M| 27|+---+---------+------+---+//下面注册临时表scala> studentDF.registerTempTable("tempTable") scala> sql("insert into sparktest.student select * from tempTable")

浙公网安备 33010602011771号