用Python帮你打码,哪里无码打哪里

0 引言

所谓的像素图,就是对图像做一个颗粒化的效果,使其产生一种妙不可言的朦胧感。费话不多说,先来看一张效果图。

▲效果图

▲原图

怎么样,效果还不错吧?现在,我们用Python来实现这种像素化的效果。

1 环境

操作系统:Windows

Python版本:3.7.3

2 需求分析

一个最简单的实现思路,在打开图片后,把图片分割成一些像素块,再对这些像素块中的图像信息进行处理(修改图像中的RGB值)即可。

这里我们使用Numpy库和PIL库来实现这个需求,后者用来图像的读取与保存,涉及到的所有图像处理动作均借助Numpy来实现。

有关NumPy模块、PIL模块的介绍,可参考如下。

NumPy(Numerical Python) 是 Python 语言的一个扩展程序库,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。

PIL(Python Imaging Library)是Python常用的图像处理库,而Pillow是PIL的一个友好Fork,提供了了广泛的文件格式支持,强大的图像处理能力,主要包括图像储存、图像显示、格式转换以及基本的图像处理操作等。

这两个模块非Python内置,都属于第三方模块,可直接采用如下方式进行安装。

 

接下来,我们要处理图片,首先得打开一张图片,如下

data = Image.open("P:\\Personal\\LuoShen.xpg")

 

然后把图像转换化Numpy数组进行下一步的处理

im1 = np.array(data)

 

这里处理的核心思想,也很简单,主要通过中间值的RGB,对所选范围块的RGB进行重新赋值。

im1[y:y + pixel, x:x + pixel] = im1[y + (pixel //2)][x + (pixel //2)]

这里的x、y是分别指的我们图像的横向、纵向像素点的坐标值、而pixel指的是我们要以多大的像素块,来处理这张图像,我们设置的单位像素块(Pixel数值)越小,生成的像素图越精确。

 

当然了,若单位像素块设置的太小,生成图像就看不出效果了,至于多大的数值合适,需要自行尝试。不同尺寸的图像,要达到最佳的像素化的显示效果,所需要设置的单位像素块的大小也是不同的,实践出真知。

 

我们需要图像的指定一个处理范围,并对该范围内的每一个坐标(像素)点进行像素化的处理。

 

在处理完成之后,我们再把Numpy数组转换回图像。

im2 = Image.fromarray(im1.astype(np.uint8))

最后展示出处理后的图像

im2.show()

4 代码全景展示

 

5 后记

本文使用了PIL加上Numpy的配合,短短几行代码实现了图像像素化的处理。当然这只是一种简单地实现,要想实现更丰富的处理效果,还可以借助CV2来实现。

 

好了,以上就是本篇全部内容。

posted @ 2022-10-07 20:45  I'm_江河湖海  阅读(44)  评论(0)    收藏  举报