[Converge] Loss and Loss Functions

有这么几个类别


Ref: How to Choose Loss Functions When Training Deep Learning Neural Networks

 

This tutorial is divided into three parts; they are:

  1. Regression Loss Functions
    1. Mean Squared Error Loss
    2. Mean Squared Logarithmic Error Loss
    3. Mean Absolute Error Loss
  2. Binary Classification Loss Functions
    1. Binary Cross-Entropy
    2. Hinge Loss
    3. Squared Hinge Loss
  3. Multi-Class Classification Loss Functions
    1. Multi-Class Cross-Entropy Loss
    2. Sparse Multiclass Cross-Entropy Loss
    3. Kullback Leibler Divergence Loss

 

 

  • Regression Loss Functions

 

 

  • Binary Classification Loss Functions

 

 

 

 

 

DEEP Learning's Loss Function 使用正则了吗? 


Ref: [Scikit-learn] 1.1 Generalized Linear Models - from Linear Regression to L1&L2

Ref: [Scikit-learn] 1.1 Generalized Linear Models - Logistic regression & Softmax

Ref: [Scikit-learn] 1.5 Generalized Linear Models - SGD for Classification

Ref: Loss function及regulation总结-1

Ref: Loss function及regulation总结-2

 

PS:这里注意下regulation和regularization term为两种不一样的范畴,具体来说regulation包含增加regularization term这种方法。

 

一、regulation term

  • 简单区分L1,L2 regulation term:

L1正则化和L2正则化可以看做是损失函数的惩罚项

所谓『惩罚』是指对损失函数中的某些参数做一些限制。对于线性回归模型,使用L1正则化的模型建叫做Lasso回归,使用L2正则化的模型叫做Ridge回归(岭回归)。

 

二、Regulation的常用方法

    • Dropout
    • Batch Normalization
    • Data Augmentation
    • DropConnect
    • Fractional Max Pooling
    • Stochastic Depth(Resnet- shortcut)

 

三、自定义Loss Funcion + L2

除了Regulation方法,那就自定义带有L1,L2的loss function,下面是个参考。

Goto: Implementing L2-constrained Softmax Loss Function on a Convolutional Neural Network using TensorFlow

 

End.

posted @ 2018-09-14 19:41  郝壹贰叁  阅读(310)  评论(0)    收藏  举报