[yolov3] Train your own detector
Training YOLOv3 : Deep Learning based Custom Object Detector
Starting with OpenCV 3.4.2, you can easily use YOLOv3 models in your own OpenCV application.

Training YOLOv3 : Deep Learning based Custom Object Detector
完整的应用流程。

Code: https://github.com/spmallick/learnopencv/tree/master/YOLOv3-Training-Snowman-Detector
TF训练yolov3,不知道部署有没有问题。
https://github.com/pythonlessons/TensorFlow-2.x-YOLOv3
前言: 自从Joseph Redmon提出了yolov3后,其darknet仓库已经获得了16k的star,足以说明darknet的流行。该作者最新一次更新也是一年前了,没有继续维护。不过自来自俄国的大神AlexeyAB在不断地更新darknet, 不仅添加了darknet在window下的适配,而且实现了多种SOTA目标检测算法。AlexeyAB也在库中提供了一份详细的建议,从编译、配置、涉及网络到测量指标等,一应俱全。通过阅读和理解AlexeyAB的建议,可以为我们带来很多启发。本文是来自翻译AlexeyAB的darknet中的README,并在翻译的过程中加入我们的一些经验。
ref: https://github.com/YunYang1994/tensorflow-yolov3
Benchmark (No Training Yet)
Numbers are obtained with rough calculations from detect_video.py
Macbook Pro 13 (2.7GHz i5)
| Detection | 416x416 | 320x320 | 608x608 |
|---|---|---|---|
| YoloV3 | 1000ms | 500ms | 1546ms |
| YoloV3-Tiny | 100ms | 58ms | 208ms |
Desktop PC (GTX 970)
| Detection | 416x416 | 320x320 | 608x608 |
|---|---|---|---|
| YoloV3 | 74ms | 57ms | 129ms |
| YoloV3-Tiny | 18ms | 15ms | 28ms |
AWS g3.4xlarge (Tesla M60)
| Detection | 416x416 | 320x320 | 608x608 |
|---|---|---|---|
| YoloV3 | 66ms | 50ms | 123ms |
| YoloV3-Tiny | 15ms | 10ms | 24ms |
RTX 2070 (credit to @AnaRhisT94)
| Detection | 416x416 |
|---|---|
| YoloV3 predict_on_batch | 29-32ms |
| YoloV3 predict_on_batch + TensorRT | 22-28ms |
Darknet version of YoloV3 at 416x416 takes 29ms on Titan X. Considering Titan X has about double the benchmark of Tesla M60, Performance-wise this implementation is pretty comparable.


浙公网安备 33010602011771号