Easy Summation
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 27 Accepted Submission(s): 16
Problem Description
You are encountered with a traditional problem concerning the sums of powers.
Given two integersn and k .
Let f(i)=ik ,
please evaluate the sum f(1)+f(2)+...+f(n) .
The problem is simple as it looks, apart from the value of n in
this question is quite large.
Can you figure the answer out? Since the answer may be too large, please output the answer modulo109+7 .
Given two integers
Can you figure the answer out? Since the answer may be too large, please output the answer modulo
Input
The first line of the input contains an integer T(1≤T≤20) ,
denoting the number of test cases.
Each of the followingT lines
contains two integers n(1≤n≤10000) and k(0≤k≤5) .
Each of the following
Output
For each test case, print a single line containing an integer modulo 109+7 .
Sample Input
3 2 5 4 2 4 1
Sample Output
33 30 10
Source
——————————————————————————————————
题意:给出一个n和k,求从1^k到n^k的和
解题思路:暴力,注意取模即可
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <algorithm>
#include <cmath>
#include <map>
#include <cmath>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <bitset>
#include <functional>
using namespace std;
#define LL long long
const int INF=0x3f3f3f3f;
const int mod=1e9+7;
int n,m;
int main()
{
int T;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&m,&n);
LL ans=0;
for(int i=1; i<=m; i++)
{
LL x=1;
for(int j=1; j<=n; j++)
{
x*=i;
x%=mod;
}
ans+=x;
ans%=mod;
}
printf("%lld\n",ans);
}
return 0;
}
浙公网安备 33010602011771号