//最短路径 - Dijkstra算法 参数:图G、源点v
void Dijkstra(Graph G, int v)
{
//初始化
int n = G.vexnum;//n为图的顶点个数
for (int i = 0; i < n; i++)
{
S[i] = false;
D[i] = G.Edge[v][i];
if (D[i] < INF)Pr[i] = v; //v与i连接,v为前驱
else Pr[i] = -1;
}
S[v] = true;
D[v] = 0;
//初始化结束,求最短路径,并加入S集
for (int i = 1; i < n; i++)
{
int min = INF;
int temp;
for (int w = 0; w < n; w++)
if (!S[w] && D[w] < min) //某点temp未加入s集,且为当前最短路径
{
temp = w;
min = D[w];
}
S[temp] = true;
//更新从源点出发至其余点的最短路径 通过temp
for (int w = 0; w < n; w++)
if (!S[w] && D[temp] + G.Edge[temp][w] < D[w])
{
D[w] = D[temp] + G.Edge[temp][w];
Pr[w] = temp;
}
}
}
//弗洛伊德基本代码
#include <bits/stdc++.h>
using namespace std;
int main()
{
int e[401][401],l,k,i,j,n,m,t1,t2,t3;
int inf=100000000;
int s;
cin>>n>>m>>s>>l;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++){
if(i==j) e[i][j]=0;
else e[i][j]=inf;
}
for(i=1;i<=m;i++)
{
cin>>t1>>t2>>t3;
e[t1][t2]=e[t2][t1]=t3;
}
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
return 0;
}