hadoop mapreduce数据排序
有如下3个输入文件:
file0
2 32 654 32 15 756 65223
 file1
5956 22 650 92
 file2
26 54 6
 由于reduce获得的key是按字典顺序排序的,利用默认的规则即可。
// map将输入中的value化成IntWritable类型,作为输出的key
	public static class Map extends
			Mapper<Object, Text, IntWritable, IntWritable> {
		
		private static IntWritable data = new IntWritable();
		// 实现map函数
		public void map(Object key, Text value, Context context)
				throws IOException, InterruptedException {
			String line = value.toString();
			data.set(Integer.parseInt(line));
			context.write(data, new IntWritable(1));
		}
	}
	// reduce将输入中的key复制到输出数据的key上,
	// 然后根据输入的value-list中元素的个数决定key的输出次数
	// 用全局linenum来代表key的位次
	public static class Reduce extends
			Reducer<IntWritable, IntWritable, IntWritable, IntWritable> {
		private static IntWritable linenum = new IntWritable(1);
		// 实现reduce函数
		public void reduce(IntWritable key, Iterable<IntWritable> values,
				Context context) throws IOException, InterruptedException {
			for (IntWritable val : values) {
				context.write(linenum, key);
				linenum = new IntWritable(linenum.get() + 1);
			}
		}
	}
 输出如下:
1 2 2 6 3 15 4 22 5 26 6 32 7 32 8 54 9 92 10 650 11 654 12 756 13 5956 14 65223
 
 
 
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号