2270. 分割数组的方案数

给你一个下标从 0 开始长度为 n 的整数数组 nums 。
如果以下描述为真,那么 nums 在下标 i 处有一个 合法的分割 :

前 i + 1 个元素的和 大于等于 剩下的 n - i - 1 个元素的和。
下标 i 的右边 至少有一个 元素,也就是说下标 i 满足 0 <= i < n - 1 。
请你返回 nums 中的 合法分割 方案数。

示例 1:

输入:nums = [10,4,-8,7]
输出:2
解释:
总共有 3 种不同的方案可以将 nums 分割成两个非空的部分:

  • 在下标 0 处分割 nums 。那么第一部分为 [10] ,和为 10 。第二部分为 [4,-8,7] ,和为 3 。因为 10 >= 3 ,所以 i = 0 是一个合法的分割。
  • 在下标 1 处分割 nums 。那么第一部分为 [10,4] ,和为 14 。第二部分为 [-8,7] ,和为 -1 。因为 14 >= -1 ,所以 i = 1 是一个合法的分割。
  • 在下标 2 处分割 nums 。那么第一部分为 [10,4,-8] ,和为 6 。第二部分为 [7] ,和为 7 。因为 6 < 7 ,所以 i = 2 不是一个合法的分割。
    所以 nums 中总共合法分割方案受为 2 。
    示例 2:

输入:nums = [2,3,1,0]
输出:2
解释:
总共有 2 种 nums 的合法分割:

  • 在下标 1 处分割 nums 。那么第一部分为 [2,3] ,和为 5 。第二部分为 [1,0] ,和为 1 。因为 5 >= 1 ,所以 i = 1 是一个合法的分割。
  • 在下标 2 处分割 nums 。那么第一部分为 [2,3,1] ,和为 6 。第二部分为 [0] ,和为 0 。因为 6 >= 0 ,所以 i = 2 是一个合法的分割。

提示:

2 <= nums.length <= 105
-105 <= nums[i] <= 105

解题思路:
1.计算原始状态下右侧数据的所有和
2.从数组下标0开始计算左侧数据和
3.左侧大于右侧则结果加1

完整代码:
    class Solution {
        public int waysToSplitArray(int[] nums) {
            int res = 0;
            long right = 0;
            long left = 0;
            for (int j = 0; j < nums.length; j++) {
                right += nums[j];
            }
            for (int i = 0; i < nums.length-1; i++) {
                left += nums[i];
                right -= nums[i];
                if(left >= right){
                    res+=1;
                }
            }
            return res;
        }
    }
posted @ 2025-01-13 18:13  JAVA-CHENG  阅读(21)  评论(0)    收藏  举报