Spark Transformations介绍

背景

本文介绍是基于Spark 1.3源码

如何创建RDD?

RDD可以从普通数组创建出来,也可以从文件系统或者HDFS中的文件创建出来。

举例:从普通数组创建RDD,里面包含了1到9这9个数字,它们分别在3个分区中。


scala> val a = sc.parallelize(1 to 9, 3)
a: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[103] at parallelize at <console>:21

举例:读取文件README.md来创建RDD,文件中的每一行就是RDD中的一个元素

scala> val file = sc.textFile("README.md")
file: org.apache.spark.rdd.RDD[String] = README.md MapPartitionsRDD[3] at textFile at <console>:21

虽然还有别的方式可以创建RDD,但在本文中我们主要使用上述两种方式来创建RDD以说明Transformations。

map

map是对RDD中的每个元素都执行一个指定的函数来产生一个新的RDD。任何原RDD中的元素在新RDD中都有且只有一个元素与之对应。

定义


def map[U: ClassTag](f: T => U): RDD[U]

举例:


scala> val a = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
a: org.apache.spark.rdd.RDD[String] = ParallelCollectionRDD[4] at parallelize at <console>:21

scala> val b = a.map(_.length)
b: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[5] at map at <console>:23
scala> val c=a.zip(b)
c: org.apache.spark.rdd.RDD[(String, Int)] = ZippedPartitionsRDD2[6] at zip at <console>:25 
scala> c.collect
res0: Array[(String, Int)] = Array((dog,3), (salmon,6), (salmon,6), (rat,3), (elephant,8))

filter

filter作用于原RDD中每个元素,过滤掉原RDD中f返回值为false的元素

定义


def filter(f: T => Boolean): RDD[T]

举例


scala> val file=sc.textFile("README.md")
file: org.apache.spark.rdd.RDD[String] = README.md MapPartitionsRDD[19] at textFile at <console>:21



scala> file.filter(line=>line.contains("spark")).count
res5: Long = 11
 

scala> file.filter(line=>line.contains("spark")).collect
res6: Array[String] = Array(<http://spark.apache.org/>, guide, on the [project web page](http://spark.apache.org/documentation.html), ["Building Spark"](http://spark.apache.org/docs/latest/building-spark.html)., " ./bin/spark-shell", " ./bin/pyspark", "examples to a cluster. This can be a mesos:// or spark:// URL, ", " MASTER=spark://host:7077 ./bin/run-example SparkPi", Testing first requires [building Spark](#building-spark). Once Spark is built, tests, ["Specifying the Hadoop Version"](http://spark.apache.org/docs/latest/building-with-maven.html#specifying-the-hadoop-version), ["Third Party Hadoop Distributions"](http://spark.apache.org/docs/latest/hadoop-third-party-distributions.html), Please refer to the [Configuration guide](http://spark.apache.org/docs/latest/configurat...

flatMap

flatMap和map的区别是作用于map的函数只会返回一个元素,作用后元素个数不变,而作用于flatMap的函数返回包含0个或多个元素list的迭代器

定义


def flatMap[U: ClassTag](f: T => TraversableOnce[U]): RDD[U]

举例


scala> val file=sc.textFile("README.md")
file: org.apache.spark.rdd.RDD[String] = README.md MapPartitionsRDD[25] at textFile at <console>:21



scala> file.flatMap(_.split(" ")).take(5)
res11: Array[String] = Array(#, Apache, Spark, "", Spark)

 

scala> file.map(_.split(" ")).take(5)
res12: Array[Array[String]] = Array(Array(#, Apache, Spark), Array(""), Array(Spark, is, a, fast, and, general, cluster, computing, system, for, Big, Data., It, provides), Array(high-level, APIs, in, Scala,, Java,, and, Python,, and, an, optimized, engine, that), Array(supports, general, computation, graphs, for, data, analysis., It, also, supports, a))

scala> file.map(_.length).take(5)
res1: Array[Int] = Array(14, 0, 78, 72, 73)

我们在统计一个文件中有多少单词时,应该使用flatMap,如果使用map分词,每行返回一个数组。如果计算每行的长度应该使用map

mapPartitions

mapPartitions是map的一个变种。map的输入函数是应用于RDD中每个元素,而mapPartitions的输入函数是应用于每个分区,也就是把每个分区中的内容作为整体来处理的。

定义


def mapPartitions[U: ClassTag](
    f: Iterator[T] => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]

f即为输入函数,它处理每个分区里面的内容。每个分区中的内容将以Iterator[T]传递给输入函数f,f的输出结果是Iterator[U]。最终的RDD由所有分区经过输入函数处理后的结果合并起来的。

举例


scala> :paste
// Entering paste mode (ctrl-D to finish)

val nums=sc.parallelize(1 to 9,3)
nums.mapPartitions(iter=>{
var res = List[(Int, Int)]()
var pre = iter.next
while (iter.hasNext) {
val cur = iter.next;
res ::= (pre, cur)
pre = cur
}
res.iterator
}).collect()
 
// Exiting paste mode, now interpreting. 
nums: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[7] at parallelize at <console>:21
res1: Array[(Int, Int)] = Array((2,3), (1,2), (5,6), (4,5), (8,9), (7,8))

上述例子经过mapPartitions把分区中一个元素和它的下一个元素组成一个Tuple。因为分区中最后一个元素没有下一个元素了,所以(3,4)和(6,7)不在结果中。
mapPartitions还有些变种,比如mapPartitionsWithIndex、mapPartitionsWithContext、

mapPartitionsWithSplit,但是从1.2开始mapPartitionsWithContext、mapPartitionsWithSplit这些已作废,下面介绍mapPartionsWithIndex。

mapPartionsWithIndex

定义

def mapPartitionsWithIndex[U: ClassTag](
    f: (Int, Iterator[T]) => Iterator[U], preservesPartitioning: Boolean = false): RDD[U]

mapPartitionsWithIndex类似于mapPartitions,只是作用函数是两个参数,多了partition的索引。

举例

scala> :paste
// Entering paste mode (ctrl-D to finish)

val nums=sc.parallelize(1 to 9,3)
nums.mapPartitionsWithIndex((index,iter)=>{
 if(index == 0)
 iter.toList.map(_*2).iterator
 else
 iter
}).collect()

// Exiting paste mode, now interpreting.

nums: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21 
res0: Array[Int] = Array(2, 4, 6, 4, 5, 6, 7, 8, 9)

参考

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html
https://spark.apache.org/docs/latest/programming-guide.html

posted @ 2015-05-24 21:36  TheBug  阅读(...)  评论(... 编辑 收藏