数位DP
技巧:某个区间内满足某个性质的数的个数
1: \([X, Y] \rightarrow F(Y)-F(X-1)\)
2:从树的角度来考虑
例题
度的数量
根据题目中的条件,转化一下条件,就是求区间中的数\(x\), 满足\(x\)在\(B\)进制下有\(K\)个位上是\(1\).
我们考虑技巧1,即求出函数\(F(X)\)(区间\([0, X]\)满足条件的数的数量)。
假设一个数为
我们以一颗树来考虑,先确定第\(n\)位的数, 然后向下扩展
复杂度\(O(logN)\)
#include <bits/stdc++.h>
using i64 = long long;
const int N = 31;
int K, B;
int f[N][N];
void init() {
for (int i = 0; i < N; i++) {
for (int j = 0; j <= i; j++) {
if (!j) f[i][j] = 1;
else f[i][j] = f[i - 1][j - 1] + f[i - 1][j];
}
}
}
int dp(int n) {
if (!n) return 0;
std::vector<int> nums;
while (n) nums.push_back(n % B), n /= B;
int res = 0;
int last = 0;
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
if (x) { // 求左边分支的个数
res += f[i][K - last];
if (x > 1) {
if (K - last - 1 >= 0)
res += f[i][K - last - 1];
break;
} else {
last ++;
if (last > K) break;
}
}
if (!i && last == K) res ++; // 考虑最后一位是否为0
}
std::cout << last << "\n";
return res;
}
int main() {
init();
int l, r;
std::cin >> l >> r >> K >> B;
std::cout << dp(r) - dp(l - 1);
}
数字游戏
先预处理\(dp[i][j]\)(考虑前\(i\)个数,最高位为\(j\)时的方案数量),在按树的思维进行求解。
#include <bits/stdc++.h>
using i64 = long long;
int f[40][12];
void init() {
for (int i = 0; i <= 9; i ++) f[1][i] = 1;
for (int i = 2; i <= 32; i ++) {
for (int j = 0; j <= 9; j ++) {
for (int k = j; k <= 9; k ++) {
f[i][j] += f[i - 1][k];
}
}
}
}
int dp(int n) {
if (!n) return 1;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
int res = 0;
int last = 0;
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
for (int j = last; j < x; j ++) {
res += f[i + 1][j];
}
if (last <= x) last = x;
else break;
if (!i) res ++;
}
// for (int i = 1; i < nums.size(); i ++) {
// for (int j = 1; j <= 9; j ++) {
// res += f[i][j];
// }
// }
return res;
}
int main() {
init();
int l, r;
while (std::cin >> l >> r) {
std::cout << dp(r) - dp(l - 1) << "\n";
}
}
Windy数
由于前后两个数字只差要求小于等于\(2\), 所以我们这里先不考虑\(0\)的情况, 即只考虑位数为\(n\)的情况 ,后续根据\(dp\)值求位数小于\(n\)的情况。
#include <bits/stdc++.h>
using i64 = long long;
int f[20][20];
void init() {
for (int i = 0; i <= 9; i ++) f[1][i] = 1;
for (int i = 2; i <= 10; i ++) {
for (int j = 0; j <= 9; j ++) {
for (int k = 0; k <= 9; k ++) {
if (std::abs(j - k) >= 2)
f[i][j] += f[i - 1][k];
}
}
}
}
int dp(int n) {
if (!n) return 0;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
int res = 0;
int last = -2;
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
for (int j = (i == (int) nums.size() - 1); j < x; j ++) {
if (std::abs(j - last) >= 2)
res += f[i + 1][j];
}
if (std::abs(last - x) >= 2) last = x;
else break;
if (!i) res ++;
}
// 特殊处理小于n位数的windy数
for (int i = 1; i < nums.size(); i ++) {
for (int j = 1; j <= 9; j ++) {
res += f[i][j];
}
}
return res;
}
int main() {
init();
int l, r;
std::cin >> l >> r;
std::cout << dp(r) - dp(l - 1) << "\n";
}
数字游戏Ⅱ
\(f[i][j][k]\) 表示前\(i\)位已经摆好,最高位为\(j\), 所有位数字余数为\(k\)的方案数。
固 \(f[i][x][k] = \sum \limits_{j = 0}^9 f[i][j][mod(k - x, P)]\)
#include <bits/stdc++.h>
using i64 = long long;
const int N = 12, M = 110;
int P;
int f[N][10][M];
int mod(int x, int y) {
return (x % y + y) % y;
}
void init() {
memset(f, 0, sizeof f);
for (int i = 0; i <= 9; i ++) f[1][i][i % P] ++;
for (int i = 2; i < N; i ++) {
for (int j = 0; j <= 9; j ++) {
for (int k = 0; k < P; k ++) {
for (int x = 0; x <= 9; x ++) {
f[i][j][k] += f[i - 1][x][mod(k - j, P)];
}
}
}
}
}
int dp(int n) {
if (!n) return 1;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
int res = 0;
int last = 0;
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
for (int j = 0; j < x; j ++) {
res += f[i + 1][j][mod(-last, P)];
}
last += x;
if (!i && last % P == 0) res ++;
}
return res;
}
int main() {
int l, r;
while (std::cin >> l >> r >> P) {
init();
std::cout << dp(r) - dp(l - 1) << "\n";
}
}
不要62
#include <bits/stdc++.h>
using i64 = long long;
const int N = 10;
int f[N][10];
void init() {
for (int i = 0; i <= 9; i ++) {
if (i != 4) {
f[1][i] = 1;
}
}
for (int i = 2; i < N; i ++) {
for (int j = 0; j <= 9; j ++) {
if (j == 4) continue;
for (int k = 0; k <= 9; k ++) {
if (k == 4 || j == 6 && k == 2) continue;
f[i][j] += f[i - 1][k];
}
}
}
}
int dp(int n) {
if (!n) return 1;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
int res = 0;
int last = 0;
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
for (int j = 0; j < x; j ++) {
if (j == 4 || last == 6 && j == 2) continue;
res += f[i + 1][j];
}
if (x == 4 || last == 6 && x == 2) break;
last = x;
if (!i) res ++;
}
return res;
}
int main() {
init();
int l, r;
while (std::cin >> l >> r, l && r) {
std::cout << dp(r) - dp(l - 1) << "\n";
}
}
恨7不成妻
同样以树的方式思考,我们考虑如何设置转移方程
如果一个整数符合下面三个条件之一,那么我们就说这个整数和 7有关:
- 整数中某一位是 7;
- 整数的每一位加起来的和是 7 的整数倍;
- 这个整数是 7 的整数倍。
我们要找到不具有上述特性的数字
由于我们要求的是平方和,假设当前我们已经枚举到第\(i\)位,且最高位为数为\(j\)当前满足的数为\(jA_1,jA_2,jA_3,\dots jA_t\),对其求平方和
根据上述公式平方和需要由数量和一阶和和二阶和求得
设状态转移方程\(f[i][j][k][z]\) 表示考虑前\(i\)个数,当最高位\(i\)为\(j\)时,并且该数模7为\(k\) 的方案数量, 且数字相加为模\(7\)的余数为\(z\).
另外这道算是数位DP的难题了, 对于取模有很高的要求, 需要时刻防止数的溢出(因为有多个乘法,并且数都很大), 同理其实这道题出三次方,也可以根据前面的数量和一次方二次方推导。
#include <bits/stdc++.h>
using i64 = long long;
const int N = 20, P = 1e9 + 7;
struct F {
int s0, s1, s2;
} f[N][10][7][7];
int power7[N], power9[N];
int mod(i64 x, int y) {
return (x % y + y) % y;
}
void init() {
for (int i = 0; i <= 9; i ++) {
if (i == 7) continue;
auto& v = f[1][i][i % 7][i % 7];
v.s0 ++;
v.s1 += i;
v.s2 += i * i;
}
i64 power = 10;
for (int i = 2; i < N; i ++, power *= 10) {
for (int j = 0; j <= 9; j ++) {
if (j == 7) continue;
for (int a = 0; a < 7; a ++) {
for (int b = 0; b < 7; b ++) {
for (int k = 0; k <= 9; k ++) {
if (k == 7) continue;
auto &v1 = f[i][j][a][b], &v2 = f[i - 1][k][mod(a - j * power, 7)][mod(b - j, 7)];
v1.s0 = mod((v1.s0 + v2.s0), P);
v1.s1 = mod(v1.s1 + v2.s1 + j * (power % P) % P * v2.s0, P);
v1.s2 = mod(v1.s2 +
j * j * (power % P) % P * (power % P) % P * v2.s0 % P +
2 * j * power % P * v2.s1 % P +
v2.s2, P);
}
}
}
}
}
power7[0] = power9[0] = 1;
for (int i = 1; i < N; i ++) {
power7[i] = power7[i - 1] * 10 % 7;
power9[i] = power9[i - 1] * 10ll % P;
}
}
F get(int i, int j, int a, int b) {
int s0 = 0, s1 = 0, s2 = 0;
for (int x = 0; x < 7; x ++) {
for (int y = 0; y < 7; y ++) {
if (x == a || y == b) continue;
auto v = f[i][j][x][y];
s0 = (s0 + v.s0) % P;
s1 = (s1 + v.s1) % P;
s2 = (s2 + v.s2) % P;
}
}
return {s0, s1, s2};
}
int dp(i64 n)
{
if (!n) return 0;
i64 backup_n = n % P;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
i64 res = 0;
i64 last_a = 0, last_b = 0;
for (int i = nums.size() - 1; i >= 0; i -- )
{
int x = nums[i];
for (int j = 0; j < x; j ++ )
{
if (j == 7) continue;
int a = mod(-last_a * power7[i + 1], 7);
int b = mod(-last_b, 7);
auto v = get(i + 1, j, a, b);
res = mod(
res +
(last_a % P) * (last_a % P) % P * power9[i + 1] % P * power9[i + 1] % P * v.s0 % P +
v.s2 +
2 * last_a % P * power9[i + 1] % P * v.s1,
P);
}
if (x == 7) break;
last_a = last_a * 10 + x;
last_b += x;
if (!i && last_a % 7 && last_b % 7) res = (res + backup_n * backup_n) % P;
}
return res;
}
int main() {
init();
int _;
std::cin >> _;
while (_ --) {
i64 l, r;
std::cin >> l >> r;
std::cout << mod(dp(r) - dp(l - 1), P) << "\n";
}
return 0;
}
计数问题
#include <bits/stdc++.h>
using i64 = long long;
const int N = 11;
i64 f[N][N], g[N][N];
i64 power[N];
void init() {
power[0] = 1;
for (int i = 1; i <= 9; i ++) power[i] = power[i - 1] * 10;
// f[i][j] 表示含有前导0, 0~(i个9)
for (int i = 0; i <= 9; i ++) f[1][i] = 1;
for (int i = 2; i <= 9; i ++) {
for (int j = 0; j <= 9; j ++) {
f[i][j] = 10 * f[i - 1][j] + power[i - 1];
}
}
// g[i][j] 表示不含有前导0, 0~(i个9)
// g[i][j] = 9 * f[i - 1][j] + power[i - 1] + g[i - 1][j];
for (int i = 1; i <= 9; i ++) g[1][i] = 1;
for (int i = 2; i <= 9; i ++) {
g[i][0] = 9 * f[i - 1][0] + g[i - 1][0];
for (int j = 1; j <= 9; j ++) {
g[i][j] = 9 * f[i - 1][j] + power[i - 1] + g[i - 1][j];
}
}
}
std::vector<int> dp(int n) {
std::vector<int> res(10, 0), last(10, 0);
if (!n) return res;
std::vector<int> nums;
while (n) nums.push_back(n % 10), n /= 10;
for (int i = 0; i <= 9; i ++) res[i] += g[(int) nums.size() - 1][i];
for (int i = (int) nums.size() - 1; i >= 0; i --) {
int x = nums[i];
for (int j = (i == nums.size() - 1); j < x; j ++) {
for (int k = 0; k <= 9; k ++) {
res[k] += last[k] * power[i];
}
res[j] += power[i];
for (int k = 0; k <= 9; k ++) {
res[k] += f[i][k];
}
}
last[x] ++;
if (!i) {
for (int k = 0; k <= 9; k ++) {
res[k] += last[k];
}
}
}
return res;
}
int main() {
init();
// for (int i = 0; i <= 9; i ++) {
// std::cout << f[2][i] << "\n";
// }
int l, r;
while (std::cin >> l >> r, l || r) {
if (l > r) std::swap(l, r);
std::vector<int> v1 = dp(r);
std::vector<int> v2 = dp(l - 1);
for (int i = 0; i <= 9; i ++) {
std::cout << v1[i] - v2[i] << " \n"[i == 9];
}
}
}