python3调用oepncv检测人脸
python3调用oepncv检测人脸,检测结果发送后台服务器,可使用多线程
# -*- coding: utf-8 -*-
import cv2
import time
import multiprocessing as mp
import numpy as np
import os
import requests
respNum = 1
# showVideo = True
showVideo = False
camera_ips = [
"saveImg",
"xxx",
]
path = './opencvImg'
# 获取画面
def image_put(q, ip):
cap = cv2.VideoCapture(ip)
while True:
q.put(cap.read()[1])
q.get() if q.qsize() > 1 else time.sleep(0.01)
# 检测并显示画面
def image_get(q, window_name,lock,outImgList,showVideo):
FONT = cv2.FONT_HERSHEY_PLAIN
frame_id = 0
time_start = time.time()
frame_jum = 5
frame_now = 0
#告诉OpenCV使用人脸识别分类器
classfier = cv2.CascadeClassifier("./haarcascade_frontalface_alt.xml")
#识别出人脸后要画的边框的颜色,RGB格式
color = (0, 255, 0)
while True:
frame = q.get()
frame_now+=1
if(frame_now>=frame_jum):
frame_now = 0
else:
continue
frame_id += frame_jum
#将当前帧转换成灰度图像
grey = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
#人脸检测,1.2和2分别为图片缩放比例和需要检测的有效点数
faceRects = classfier.detectMultiScale(grey, scaleFactor = 1.2, minNeighbors = 3, minSize = (32, 32))
if len(faceRects) > 0: #大于0则检测到人脸
for faceRect in faceRects: #单独框出每一张人脸
x, y, w, h = faceRect
names = str(time.time()).replace('.','')+'.jpg'
path_img = os.path.join(path, names)
outImg = frame[y:y+h,x:x+w]
if(outImg is None):
continue
cv2.imwrite(path_img,outImg)
print('imwrite')
lock.acquire()
outImgList.append(path_img)
lock.release()
if showVideo:
cv2.namedWindow(window_name, flags=cv2.WINDOW_FREERATIO)
if len(faceRects) > 0: #大于0则检测到人脸
for faceRect in faceRects: #单独框出每一张人脸
x, y, w, h = faceRect
cv2.rectangle(frame, (x - 10, y - 10), (x + w + 10, y + h + 10), color, 2)
elapsed_time = time.time() - time_start
fps = frame_id/elapsed_time
cv2.putText(frame, "FPS: " + str(round(fps, 2)), (8, 30), FONT, 2, (0, 0, 0), 2)
cv2.imshow(window_name, frame)
cv2.waitKey(10)
# 保存检测出的人物
def saveImg(q,lock,outImgList,http):
while True:
lock.acquire()
if outImgList:
try:
path_img=outImgList.pop()
lock.release()
imgs = open(path_img, 'rb')
files = {'img': ('img.jpg', imgs)}
r = requests.post(http, files=files)
imgs.close()
os.remove(path_img)
except EOFError:
print(EOFError)
continue
else:
lock.release()
time.sleep(0.5)
def run_multi_camera():
h=''
video=''
with open("http.txt","r",encoding='utf-8') as f:
h=f.readline()
with open("video.txt","r",encoding='utf-8') as f:
video=f.readline()
camera_ip_l = camera_ips[0:respNum+1]
mp.set_start_method(method='spawn') # init
queues = [mp.Queue(maxsize=4) for _ in camera_ip_l]
processes = []
lock = mp.Lock()
outImgList=mp.Manager().list()
for queue, camera_ip in zip(queues, camera_ip_l):
if camera_ip=='saveImg':
processes.append(mp.Process(target=saveImg, args=(queue,lock,outImgList,h)))
else:
processes.append(mp.Process(target=image_put, args=(queue, video)))
processes.append(mp.Process(target=image_get, args=(queue, video,lock,outImgList,showVideo)))
for process in processes:
process.daemon = True
process.start()
for process in processes:
process.join()
if __name__ == '__main__':
# mp.freeze_support()
run_multi_camera()
浙公网安备 33010602011771号