#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define lson rt<<1, l, mid
#define rson rt<<1|1, mid+1, r
using namespace std;
const int maxn = 500100;
int P;
typedef long long ll;
struct Edge {
int to, next;
}edges[maxn*2];
int head[maxn], tot;
int n;
ll w[maxn];
int fa[maxn], son[maxn], siz[maxn], dep[maxn];
int top[maxn], id[maxn], rk[maxn], cnt;
// son[u]: u的重儿子
// top[u]: u所在链的顶端节点
//
// id[u]: 树链剖分后节点的新编号
// rk[u]: dfs编号对应的节点 rk[id[u]] = u
// cnt : dfs序
void add(int u, int v) {
edges[++tot].to = v;
edges[tot].next = head[u];
head[u] = tot;
}
// 求fa, siz, dep, son
void dfs1(int u) {
siz[u] = 1;
for(int i=head[u];i;i=edges[i].next) {
int v = edges[i].to;
if(v==fa[u]) continue;
fa[v] = u;
dep[v] = dep[u] + 1;
dfs1(v);
siz[u] += siz[v];
if(siz[v]>siz[son[u]])
son[u] = v;
}
}
// 连接重链
void dfs2(int u, int topf) {
id[u] = ++cnt;
rk[cnt] = u;
top[u] = topf;
if(!son[u])
return;
dfs2(son[u], topf); // 重链先dfs,保证重链上各节点dfs序连续
for(int i=head[u];i;i=edges[i].next) {
int v = edges[i].to;
if(v!=fa[u] && v!=son[u]) // 不是重儿子,轻链
dfs2(v, v);
}
}
/*
操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z
操作2: 格式: 2 x y 表示求树从x到y结点最短路径上所有节点的值之和
操作3: 格式: 3 x z 表示将以x为根节点的子树内所有节点值都加上z
操作4: 格式: 4 x 表示求以x为根节点的子树内所有节点值之和
*/
ll sum[maxn*4], lazy[maxn*4];
void build(int rt, int l, int r) {
if(l!=r) {
int mid = (l+r)/2;
build(lson);
build(rson);
sum[rt] = (sum[rt<<1] + sum[rt<<1|1]) % P;
} else {
sum[rt] = w[rk[l]];
lazy[rt] = 0;
}
}
void pushDown(int rt, int len) {
if(lazy[rt]) {
(sum[rt<<1] += (len-(len>>1)) * lazy[rt] % P) %= P;
(sum[rt<<1|1] += (len>>1) * lazy[rt] % P) %= P;
(lazy[rt<<1] += lazy[rt]) %= P;
(lazy[rt<<1|1] += lazy[rt]) %= P;
lazy[rt] = 0;
}
}
void update(int rt, int l, int r, int L, int R, ll add) {
if(L<=l && R>=r) {
(lazy[rt] += add) %= P;
(sum[rt] += (r-l+1)*add) %= P;
return;
}
int mid = (l+r)/2;
pushDown(rt, r-l+1);
if(L<=mid)
update(lson, L, R, add);
if(R>mid)
update(rson, L, R, add);
sum[rt] = (sum[rt<<1] + sum[rt<<1|1]) % P;
}
ll query(int rt, int l, int r, int L, int R) {
if(L<=l && R>=r) return sum[rt];
ll res = 0;
int mid = (l+r)/2;
pushDown(rt, r-l+1);
if(L<=mid) res += query(lson, L, R) % P;
if(R>mid) res += query(rson, L, R) % P;
return res % P;
}
// 操作1
void updatePath(int x, int y, ll z) {
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) swap(x, y);
update(1, 1, n, id[top[x]], id[x], z);
x = fa[top[x]];
}
if(dep[x]>dep[y]) swap(x, y);
update(1, 1, n, id[x], id[y], z);
}
// 操作3
void updateSon(int x, ll z) {
update(1, 1, n, id[x], id[x]+siz[x]-1, z);
}
// 操作2
ll queryPath(int x, int y) {
ll res = 0;
while(top[x]!=top[y]) {
if(dep[top[x]]<dep[top[y]]) swap(x, y);
res = (res + query(1, 1, n, id[top[x]], id[x])) % P;
x = fa[top[x]];
}
if(dep[x]>dep[y]) swap(x, y);
res = (res + query(1, 1, n, id[x], id[y])) % P;
return res;
}
// 操作4
ll qeurySon(int x) {
return query(1, 1, n, id[x], id[x]+siz[x]-1);
}
int main() {
int M, R;
cin>>n>>M>>R>>P;
for(int i=1;i<=n;i++) {
scanf("%lld", &w[i]);
}
for(int i=0;i<n-1;i++) {
int u, v;
scanf("%d %d", &u, &v);
add(u, v);
add(v, u);
}
dfs1(R);
dfs2(R, R);
build(1, 1, n);
while(M--) {
int op, x, y;
ll z;
scanf("%d", &op);
if(op==1) {
scanf("%d %d %lld", &x, &y, &z);
updatePath(x, y, z);
} else if(op==2) {
scanf("%d %d", &x, &y);
printf("%lld\n", queryPath(x, y));
} else if(op==3) {
scanf("%d %lld", &x, &z);
updateSon(x, z);
} else {
scanf("%d", &x);
printf("%lld\n", qeurySon(x));
}
}
return 0;
}