392.判断子序列
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。
字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。
示例 1: 输入:s = "abc", t = "ahbgdc" 输出:true
示例 2: 输入:s = "axc", t = "ahbgdc" 输出:false
提示:
- 0 <= s.length <= 100
- 0 <= t.length <= 10^4
两个字符串都只由小写字符组成。
class Solution {
public boolean isSubsequence(String s, String t) {
return process(s,t);
}
private boolean process(String s,String t){
char[] chs1=t.toCharArray();
char[] chs2=s.toCharArray();
//dp[i][j] 0...i. 0...j
//dp[i-1][j]. dp[i-1][j-1] s[i]==t[i]
int m=t.length();
int n=s.length();
boolean[][] dp=new boolean[m+1][n+1];
for(int i=0;i<=m;i++){
dp[i][0]=true;
}
for(int i=1;i<=m;i++){
for(int j=1;j<=n;j++){
dp[i][j]=dp[i-1][j];
if(chs1[i-1]==chs2[j-1]){
//if(t.charAt(i-1)==s.charAt(j-1))
dp[i][j]=dp[i][j]||dp[i-1][j-1];
}
}
}
return dp[m][n];
}
}
思路
(这道题可以用双指针的思路来实现,时间复杂度就是O(n))
这道题应该算是编辑距离的入门题目,因为从题意中我们也可以发现,只需要计算删除的情况,不用考虑增加和替换的情况。
所以掌握本题也是对后面要讲解的编辑距离的题目打下基础。
动态规划五部曲分析如下:
- 确定dp数组(dp table)以及下标的含义
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
- 确定递推公式
在确定递推公式的时候,首先要考虑如下两种操作,整理如下:
- if (s[i - 1] == t[j - 1])
- t中找到了一个字符在s中也出现了
- if (s[i - 1] != t[j - 1])
- 相当于t要删除元素,继续匹配
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1(如果不理解,在回看一下dp[i][j]的定义)
if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
- dp数组如何初始化
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。
这里大家已经可以发现,在定义dp[i][j]含义的时候为什么要表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列的长度为dp[i][j]。
因为这样的定义在dp二维矩阵中可以留出初始化的区间,如图:

如果要是定义的dp[i][j]是以下标i为结尾的字符串s和以下标j为结尾的字符串t,初始化就比较麻烦了。
这里dp[i][0]和dp[0][j]是没有含义的,仅仅是为了给递推公式做前期铺垫,所以初始化为0。
其实这里只初始化dp[i][0]就够了,但一起初始化也方便,所以就一起操作了
- 确定遍历顺序
同理从从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],那么遍历顺序也应该是从上到下,从左到右
如图所示:

- 举例推导dp数组
以示例一为例,输入:s = "abc", t = "ahbgdc",dp状态转移图如下:

dp[i][j]表示以下标i-1为结尾的字符串s和以下标j-1为结尾的字符串t 相同子序列的长度,
所以如果dp[s.size()][t.size()] 与 字符串s的长度相同说明:s与t的最长相同子序列就是s,那么s 就是 t 的子序列。
图中dp[s.size()][t.size()] = 3, 而s.size() 也为3。所以s是t 的子序列,返回true。
public boolean isSubsequence(String s, String t) {
int length1 = s.length(); int length2 = t.length();
int[][] dp = new int[length1+1][length2+1];
for(int i = 1; i <= length1; i++){
for(int j = 1; j <= length2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = dp[i][j-1];
}
}
}
if(dp[length1][length2] == length1){
return true;
}else{
return false;
}
}

浙公网安备 33010602011771号