实验6:开源控制器实践——RYU

基础要求

1.回答基础要求2中有何不同

Hub和L2Switch模块都是采用洪泛转发,但L2Switch模块运行时无法查看下发的流表,而Hub模块运行时可以查看下发的流表

2.提交修改过的L2xxxxxxxxx.py代码

from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_0
 
class L2Switch(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_0.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(L2Switch, self).__init__(*args, **kwargs)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def packet_in_handler(self, ev):
        msg = ev.msg
        dp = msg.datapath
        ofp = dp.ofproto
        ofp_parser = dp.ofproto_parser
 
        actions = [ofp_parser.OFPActionOutput(ofp.OFPP_FLOOD)]
 
        data = None
        if msg.buffer_id == ofp.OFP_NO_BUFFER:
             data = msg.data
 
        out = ofp_parser.OFPPacketOut(
            datapath=dp, buffer_id=msg.buffer_id, in_port=msg.in_port,
            actions=actions, data = data)
        dp.send_msg(out)
 

3.能够体现和验证修改的相关截图

(1)搭建下图所示SDN拓扑,协议使用Open Flow 1.0,并连接Ryu控制器,通过Ryu的图形界面查看网络拓扑

(2)验证L2Switch

修改前h1 ping h2

修改前h1 ping h3

修改后

进阶要求

1.提交相关问题回答

阅读Ryu关于simple_switch.py和simple_switch_1x.py的实现,以simple_switch_13.py为例,完成其代码的注释工作,并回答下列问题:

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
#导入需要使用的相应包
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types
 
 
class SimpleSwitch13(app_manager.RyuApp):
    #指定OpenFlow的版本
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION] 
 
    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
	#self.mac_to_port是mac地址映射到转发端口的字典
        self.mac_to_port = {} 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        # ev.msg 是用来存储对应事件的 OpenFlow 消息类别实体
        datapath = ev.msg.datapath   
	# ofproto用来表示使用的OpenFlow版本所对应的ryu.ofproto.ofproto_v1_3
        ofproto = datapath.ofproto  
	# 使用对应版本的ryu.ofproto.ofproto_v1_3_parser解析协议
        parser = datapath.ofproto_parser 
 
        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
	# priority=0表示优先级最低,所有流表都匹配不到时,才把数据包发送到controller
        self.add_flow(datapath, 0, match, actions)
 
    # 执行add_flow()方法,发送Flow Mod消息
    def add_flow(self, datapath, priority, match, actions, buffer_id=None):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
 
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:  
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst)
        datapath.send_msg(mod)
 
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    # 处理PacketIn
    def _packet_in_handler(self, ev): 
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        #从事件类中取出参数
	msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']
 
        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]
 
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
	    #接受lldp包,丢弃
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src
 
        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})
 
        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
 
        #自学习,尽可能避免下一次洪泛
        # learn a mac address to avoid FLOOD next time.
	#dpid是交换机的id,src是数据包的源mac地址,in_port是交换机接受到包的端口
        self.mac_to_port[dpid][src] = in_port 
 
        #检验目的地址是否学习
	if dst in self.mac_to_port[dpid]:
	#如果已经学习到,则向交换机下发流表,并让交换机向相应端口转发包
            out_port = self.mac_to_port[dpid][dst]
        else:
	#如果还未学习到,则无法下发流表,交换机洪泛转发包。
            out_port = ofproto.OFPP_FLOOD
 
        actions = [parser.OFPActionOutput(out_port)]
 
        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
	    #buffer_id不为None,控制器只需下发流表的命令,交换机增加了流表项后,位于缓冲区的数据包会自动转发出去。
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
	    #buffer_id为None,控制器不仅要更改交换机的流表项,
                self.add_flow(datapath, 1, match, actions)
            #还要把数据包的信息传给交换机,让交换机转发数据包
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
 
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)

a) 代码当中的mac_to_port的作用是什么?
是mac地址映射到转发端口的字典,用于保存mac地址到交换机端口的映射

b) simple_switch和simple_switch_13在dpid的输出上有何不同?
在simple_switch_13.py 中为 dpid = format(datapath.id,"d").zfill(16)
在simple_switch.py 中为 dpid = datapath.id
可以看到simple_switch_13中dpid的输出格式为:用0在dpid前填充至总长度为16,而simple_switch直接输出dpid

c) 相比simple_switch,simple_switch_13增加的switch_feature_handler实现了什么功能?
增加了实现交换机以特性应答消息响应特性请求的功能

d) simple_switch_13是如何实现流规则下发的?
在触发PacketIn事件后,首先解析相关数据结构,获取协议信息、获取源端口、包学习,交换机信息,以太网信息,等。如果以太网类型是LLDP类型,则忽略。如果不是LLDP类型,则获取目的端口和源端口还有交换机id,然后进行交换机自学习,先学习源地址对应的交换机的入端口,再查看是否已经学习目的mac地址,如果没有就洪泛转发。如果学习过,则查看是否有buffer_id,如果有则在添加流时加上buffer_id,向交换机发送数据包和流表。

e) switch_features_handler和_packet_in_handler两个事件在发送流规则的优先级上有何不同?
switch_features_handler下发流表优先级高于_packet_in_handler

2.代码

# Copyright (C) 2011 Nippon Telegraph and Telephone Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
 
from ryu.base import app_manager
from ryu.controller import ofp_event
from ryu.controller.handler import CONFIG_DISPATCHER, MAIN_DISPATCHER
from ryu.controller.handler import set_ev_cls
from ryu.ofproto import ofproto_v1_3
from ryu.lib.packet import packet
from ryu.lib.packet import ethernet
from ryu.lib.packet import ether_types
 
 
class SimpleSwitch13(app_manager.RyuApp):
    OFP_VERSIONS = [ofproto_v1_3.OFP_VERSION]
 
    def __init__(self, *args, **kwargs):
        super(SimpleSwitch13, self).__init__(*args, **kwargs)
        self.mac_to_port = {}
 
    @set_ev_cls(ofp_event.EventOFPSwitchFeatures, CONFIG_DISPATCHER)
    def switch_features_handler(self, ev):
        datapath = ev.msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
 
        # install table-miss flow entry
        #
        # We specify NO BUFFER to max_len of the output action due to
        # OVS bug. At this moment, if we specify a lesser number, e.g.,
        # 128, OVS will send Packet-In with invalid buffer_id and
        # truncated packet data. In that case, we cannot output packets
        # correctly.  The bug has been fixed in OVS v2.1.0.
        match = parser.OFPMatch()
        actions = [parser.OFPActionOutput(ofproto.OFPP_CONTROLLER,
                                          ofproto.OFPCML_NO_BUFFER)]
        self.add_flow(datapath, 0, match, actions)
 
    def add_flow(self, datapath, priority, match, actions, buffer_id=None, hard_timeout=0):
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
 
        inst = [parser.OFPInstructionActions(ofproto.OFPIT_APPLY_ACTIONS,
                                             actions)]
        if buffer_id:
            mod = parser.OFPFlowMod(datapath=datapath, buffer_id=buffer_id,
                                    priority=priority, match=match,
                                    instructions=inst, hard_timeout=hard_timeout)
        else:
            mod = parser.OFPFlowMod(datapath=datapath, priority=priority,
                                    match=match, instructions=inst, hard_timeout=hard_timeout)
        datapath.send_msg(mod)
 
    @set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
    def _packet_in_handler(self, ev):
        # If you hit this you might want to increase
        # the "miss_send_length" of your switch
        if ev.msg.msg_len < ev.msg.total_len:
            self.logger.debug("packet truncated: only %s of %s bytes",
                              ev.msg.msg_len, ev.msg.total_len)
        msg = ev.msg
        datapath = msg.datapath
        ofproto = datapath.ofproto
        parser = datapath.ofproto_parser
        in_port = msg.match['in_port']
 
        pkt = packet.Packet(msg.data)
        eth = pkt.get_protocols(ethernet.ethernet)[0]
 
        if eth.ethertype == ether_types.ETH_TYPE_LLDP:
            # ignore lldp packet
            return
        dst = eth.dst
        src = eth.src
 
        dpid = format(datapath.id, "d").zfill(16)
        self.mac_to_port.setdefault(dpid, {})
 
        self.logger.info("packet in %s %s %s %s", dpid, src, dst, in_port)
 
        # learn a mac address to avoid FLOOD next time.
        self.mac_to_port[dpid][src] = in_port
 
        if dst in self.mac_to_port[dpid]:
            out_port = self.mac_to_port[dpid][dst]
        else:
            out_port = ofproto.OFPP_FLOOD
 
        actions = [parser.OFPActionOutput(out_port)]\
 
        actions_timeout=[]
 
        # install a flow to avoid packet_in next time
        if out_port != ofproto.OFPP_FLOOD:
            match = parser.OFPMatch(in_port=in_port, eth_dst=dst, eth_src=src)
            # verify if we have a valid buffer_id, if yes avoid to send both
            # flow_mod & packet_out
            hard_timeout=10
            if msg.buffer_id != ofproto.OFP_NO_BUFFER:
                self.add_flow(datapath, 2, match,actions_timeout, msg.buffer_id,hard_timeout=10)
                self.add_flow(datapath, 1, match, actions, msg.buffer_id)
                return
            else:
                self.add_flow(datapath, 2, match, actions_timeout, hard_timeout=10)
                self.add_flow(datapath, 1, match, actions)
        data = None
        if msg.buffer_id == ofproto.OFP_NO_BUFFER:
            data = msg.data
 
        out = parser.OFPPacketOut(datapath=datapath, buffer_id=msg.buffer_id,
                                  in_port=in_port, actions=actions, data=data)
        datapath.send_msg(out)
 

3.运行结果

4.交换机流表项截图

心得体会

在阅读RYU文档和查看相关模块的源代码的过程中,我学习了解了RYU控制器的工作原理,通过验证RYU的L2Switch模块与POX的Hub模块的异同,我对其的认识也更加深入。本次的实验基础要求的难度不高,虽然刚开始ryu-manager命令的使用遇到了问题,我还是通过kill占用8080端口的进程解决了问题,根据实验文档的步骤按部就班地完成即可。而且由于本次实验与之前pox实验的验证对比操作有点形似,所以实验进行地较快。经过资料的查阅,我明白了ryu与pox转发的流表的区别,pox直接向交换机发送流表项,ryu经过处理packet_in事件后,才向交换机下发流表,
而进阶部分则难度较大,首先体现在阅读源码的阅读上,需要花费不少时间去理解,这使得我对RYU的控制机制的理解提高了。硬编码超时代码的编写也很困难,需要更深入地去学习ryu的数据结构和相关知识,才能很好地完成代码的修改和编写。
posted @ 2022-10-19 00:36  这里是中国  阅读(99)  评论(0)    收藏  举报