python类库32[多线程同步Lock+RLock+Semaphore+Event]

 

多线程基础:python类库32[多线程同步]

 

一 多线程同步

由于CPython的python解释器在单线程模式下执行,所以导致python的多线程在很多的时候并不能很好地发挥多核cpu的资源。大部分情况都推荐使用多进程。

python的多线程的同步与其他语言基本相同,主要包含:

Lock & RLock :用来确保多线程多共享资源的访问。

Semaphore : 用来确保一定资源多线程访问时的上限,例如资源池。  

Event : 是最简单的线程间通信的方式,一个线程可以发送信号,其他的线程接收到信号后执行操作。  

 

二 实例

1)Lock & RLock

Lock对象的状态可以为locked和unlocked,
使用acquire()设置为locked状态;
使用release()设置为unlocked状态。

如果当前的状态为unlocked,则acquire()会将状态改为locked然后立即返回。当状态为locked的时候,acquire()将被阻塞直到另一个线程中调用release()来将状态改为unlocked,然后acquire()才可以再次将状态置为locked。 

Lock.acquire(blocking=True, timeout=-1),blocking参数表示是否阻塞当前线程等待,timeout表示阻塞时的等待时间 。如果成功地获得lock,则acquire()函数返回True,否则返回False,timeout超时时如果还没有获得lock仍然返回False。

 

实例:(确保只有一个线程可以访问共享资源)

import threading
import time
 
num = 0
lock = threading.Lock()
 
def func(st):
    global num
    print (threading.currentThread().getName() + ' try to acquire the lock')
    if lock.acquire():
        print (threading.currentThread().getName() + ' acquire the lock.' )
        print (threading.currentThread().getName() +" :%s" % str(num) )
        num += 1
        time.sleep(st)
        print (threading.currentThread().getName() + ' release the lock.'  )        
        lock.release()
 
t1 = threading.Thread(target=func, args=(8,))
t2 = threading.Thread(target=func, args=(4,))
t3 = threading.Thread(target=func, args=(2,))
t1.start()
t2.start()
t3.start()

 

 

结果:


RLock与Lock的区别是:RLock中除了状态locked和unlocked外还记录了当前lock的owner和递归层数,使得RLock可以被同一个线程多次acquire()。

 

2)Semaphore 

Semaphore管理一个内置的计数器,
每当调用acquire()时内置计数器-1;
调用release() 时内置计数器+1;

计数器不能小于0;当计数器为0时,acquire()将阻塞线程直到其他线程调用release()。 

 

实例:(同时只有2个线程可以获得semaphore,即可以限制最大连接数为2): 

import threading
import time 

semaphore = threading.Semaphore(2)
 
def func():
    if semaphore.acquire():
        for i in range(5):
          print (threading.currentThread().getName() + ' get semaphore')
        semaphore.release()
        print (threading.currentThread().getName() + ' release semaphore')
        
        
for i in range(4):
  t1 = threading.Thread(target=func)
  t1.start()

 

 

结果:

 

 

3) Event 

Event内部包含了一个标志位,初始的时候为false。
可以使用使用set()来将其设置为true;
或者使用clear()将其从新设置为false;
可以使用is_set()来检查标志位的状态;
另一个最重要的函数就是wait(timeout=None),用来阻塞当前线程,直到event的内部标志位被设置为true或者timeout超时。如果内部标志位为true则wait()函数理解返回。

 

实例: (线程间相互通信)

import logging
import threading
import time

logging.basicConfig(level=logging.DEBUG,
format="(%(threadName)-10s : %(message)s",
)

def wait_for_event_timeout(e, t):
    """Wait t seconds and then timeout"""
    while not e.isSet():
      logging.debug("wait_for_event_timeout starting")
      event_is_set = e.wait(t)
      logging.debug("event set: %s" % event_is_set)
    if event_is_set:
      logging.debug("processing event")
    else:
      logging.debug("doing other work")
      
e = threading.Event()
t2 = threading.Thread(name="nonblock",
target=wait_for_event_timeout,args=(e, 2))
t2.start()
logging.debug("Waiting before calling Event.set()")
time.sleep(7)
e.set()
logging.debug("Event is set")

 

运行结果:

  

 

三 其他

1) 线程局部变量

线程局部变量的值是跟线程相关的,区别与全局的变量。使用非常简单如下:
mydata = threading.local()
mydata.x = 1

 

2)对Lock,semaphore,condition等使用with关键字代替手动调用acquire()和release()。 

 

完! 


作者:iTech
微信公众号: cicdops
出处:http://itech.cnblogs.com/
github:https://github.com/cicdops/cicdops

posted @ 2012-01-05 18:29  iTech  阅读(4557)  评论(0编辑  收藏  举报