最大独立集
// 最大独立集.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
/*
http://oj.daimayuan.top/course/14/problem/799
给你一张二分图,图中没有重边,你需要求出这张图中最大独立集包含的顶点个数。
最大独立集是指:在图中选出最多的点,满足他们两两之间没有边相连。
图用以下形式给出:
第一行输入两个整数 n,m
,表示图的顶点数和边数,顶点编号从 1到 n。
接下来 m 行,每行两个整数 x,y
,表示 x 和 y 之间有一条边。
输出一个数为最大独立集大小。
输入格式
第一行两个整数 n,m。
接下来 m 行,每行有两个整数,代表一条边。
输出格式
输出一个数表示答案。
样例输入
4 3
1 2
1 4
3 4
样例输出
2
数据规模
对于所有数据,保证 2≤n≤1000,0≤m≤10000,1≤x,y≤n,x≠y。
*/
#include <iostream>
#include <cstring>
using namespace std;
const int N = 1010;
const int M = 20010;
int h[N], e[M], ne[M], idx;
bool st[N];
int match[N];
int n, m;
int color[N];
void add(int a, int b) {
	e[idx] = b, ne[idx] = h[a], h[a] = idx++;
}
bool find(int x) {
	for (int i = h[x]; i != -1; i = ne[i]) {
		int j = e[i];
		if (!st[j]) {
			st[j] = true;
			if (match[j] ==0 || find(match[j])) {
				match[j] = x;
				return true;
			}
		}
	}
	return false;
}
void dfs(int x,int c) {
	if (color[x] == c) return;
	color[x] = c;
	for (int i = h[x]; i != -1; i = ne[i]) {
		int j = e[i];
		if (color[j] == 0) {
			dfs(j, 3 - c);
		}
	}
}
int main()
{
	cin >> n >> m;
	memset(h, -1, sizeof h);
	for (int i = 0; i < m; i++) {
		int a, b; cin >> a >> b;
		add(a, b); add(b, a);
	}
	for (int i = 1; i <= n; i++) {
		if (color[i] == 0) {
			dfs(i, 1);
		}
	}
	
	int res = 0;
	for (int i = 1; i <= n; i++) {
		if (color[i] == 2) continue;
		memset(st, 0, sizeof st);
		if (find(i)) res++;
	}
	cout << (n-res) << endl;
	return 0;
}
 
    作 者: itdef 
欢迎转帖 请保持文本完整并注明出处
技术博客 http://www.cnblogs.com/itdef/
B站算法视频题解
https://space.bilibili.com/18508846
qq 151435887
gitee https://gitee.com/def/
欢迎c c++ 算法爱好者 windows驱动爱好者 服务器程序员沟通交流
如果觉得不错,欢迎点赞,你的鼓励就是我的动力
欢迎转帖 请保持文本完整并注明出处
技术博客 http://www.cnblogs.com/itdef/
B站算法视频题解
https://space.bilibili.com/18508846
qq 151435887
gitee https://gitee.com/def/
欢迎c c++ 算法爱好者 windows驱动爱好者 服务器程序员沟通交流
如果觉得不错,欢迎点赞,你的鼓励就是我的动力
                    
                
                
            
        
浙公网安备 33010602011771号