实验2

一、实验结论

1. 实验任务1

程序源代码

T.h


#pragma once

#include <string>

// 类T: 声明
class T {
// 对象属性、方法
public:
    T(int x = 0, int y = 0);   // 普通构造函数
    T(const T &t);  // 复制构造函数
    T(T &&t);       // 移动构造函数
    ~T();           // 析构函数

    void adjust(int ratio);      // 按系数成倍调整数据
    void display() const;           // 以(m1, m2)形式显示T类对象信息

private:
    int m1, m2;

// 类属性、方法
public:
    static int get_cnt();          // 显示当前T类对象总数

public:
    static const std::string doc;       // 类T的描述信息
    static const int max_cnt;           // 类T对象上限

private:
    static int cnt;         // 当前T类对象数目

// 类T友元函数声明
    friend void func();
};

// 普通函数声明
void func();

T.cpp

#include "T.h"
#include <iostream>
#include <string>

// 类T实现

// static成员数据类外初始化
const std::string T::doc{"a simple class sample"};
const int T::max_cnt = 999;
int T::cnt = 0;

// 类方法
int T::get_cnt() {
   return cnt;
}

// 对象方法
T::T(int x, int y): m1{x}, m2{y} { 
    ++cnt; 
    std::cout << "T constructor called.\n";
} 

T::T(const T &t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T copy constructor called.\n";
}

T::T(T &&t): m1{t.m1}, m2{t.m2} {
    ++cnt;
    std::cout << "T move constructor called.\n";
}    

T::~T() {
    --cnt;
    std::cout << "T destructor called.\n";
}           

void T::adjust(int ratio) {
    m1 *= ratio;
    m2 *= ratio;
}    

void T::display() const {
    std::cout << "(" << m1 << ", " << m2 << ")" ;
}     

// 普通函数实现
void func() {
    T t5(42);
    t5.m2 = 2049;
    std::cout << "t5 = "; t5.display(); std::cout << '\n';
}

task1.cpp

#include "T.h"
#include <iostream>

void test_T();

int main() {
    std::cout << "test Class T: \n";
    test_T();

    std::cout << "\ntest friend func: \n";
    func();
}

void test_T() {
    using std::cout;
    using std::endl;

    cout << "T info: " << T::doc << endl;
    cout << "T objects'max count: " << T::max_cnt << endl;
    cout << "T objects'current count: " << T::get_cnt() << endl << endl;

    T t1;
    cout << "t1 = "; t1.display(); cout << endl;

    T t2(3, 4);
    cout << "t2 = "; t2.display(); cout << endl;

    T t3(t2);
    t3.adjust(2);
    cout << "t3 = "; t3.display(); cout << endl;

    T t4(std::move(t2));
    cout << "t4 = "; t4.display(); cout << endl;

    cout << "test: T objects'current count: " << T::get_cnt() << endl;
}

运行测试截图

1

问题1:T.h中,在类T内部,已声明 func 是T的友元函数。在类外部,去掉line36,重新编译,程序能否正常运行。

YES

问题2: T.h中,line9-12给出了各种构造函数、析构函数。总结它们各自的功能、调用时机。

普通构造函数:创建新对象时调用,用于初始化对象数据成员

复制构造函数:用已存在对象创建新对象时调用,进行深拷贝

移动构造函数:使用右值引用创建对象时调用,转移资源所有权

析构函数:对象生命周期结束时调用,用于清理资源

问题3: T.cpp中,line13-15,剪切到T.h的末尾,重新编译,程序能否正确编译。如不能,以截图形式给出报错信息,分析原因。

2.实验任务2

程序源代码

Complex.h

#pragma once
#include <string>

class Complex {
public:
    Complex(double real = 0.0, double imag = 0.0);
    Complex(const Complex& other);

    double get_real() const;
    double get_imag() const;
    void add(const Complex& other);

    static const std::string doc;

private:
    double real, imag;

    friend void output(const Complex& c);
    friend double abs(const Complex& c);
    friend Complex add(const Complex& c1, const Complex& c2);
    friend bool is_equal(const Complex& c1, const Complex& c2);
    friend bool is_not_equal(const Complex& c1, const Complex& c2);
};

void output(const Complex& c);
double abs(const Complex& c);
Complex add(const Complex& c1, const Complex& c2);
bool is_equal(const Complex& c1, const Complex& c2);
bool is_not_equal(const Complex& c1, const Complex& c2);

Complex.cpp

#include "Complex.h"
#include <iostream>
#include <cmath>

const std::string Complex::doc = "a simplified complex class";

Complex::Complex(double r, double i) : real(r), imag(i) {}

Complex::Complex(const Complex& other) : real(other.real), imag(other.imag) {}

double Complex::get_real() const {
    return real;
}

double Complex::get_imag() const {
    return imag;
}

void Complex::add(const Complex& other) {
    real += other.real;
    imag += other.imag;
}

void output(const Complex& c) {
    std::cout << c.real;
    if (c.imag >= 0)
        std::cout << " + " << c.imag << "i";
    else
        std::cout << " - " << -c.imag << "i";
}

double abs(const Complex& c) {
    return std::sqrt(c.real * c.real + c.imag * c.imag);
}

Complex add(const Complex& c1, const Complex& c2) {
    return Complex(c1.real + c2.real, c1.imag + c2.imag);
}

bool is_equal(const Complex& c1, const Complex& c2) {
    return c1.real == c2.real && c1.imag == c2.imag;
}

bool is_not_equal(const Complex& c1, const Complex& c2) {
    return !is_equal(c1, c2);
}

task2.cpp

// 待补足头文件
#include "Complex.h"
#include <iostream>
#include <iomanip>
#include <complex>

void test_Complex();
void test_std_complex();

int main() {
    std::cout << "*******测试1: 自定义类Complex*******\n";
    test_Complex();

    std::cout << "\n*******测试2: 标准库模板类complex*******\n";
    test_std_complex();
}

void test_Complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "类成员测试: " << endl;
    cout << Complex::doc << endl << endl;

    cout << "Complex对象测试: " << endl;
    Complex c1;
    Complex c2(3, -4);
    Complex c3(c2);
    Complex c4 = c2;
    const Complex c5(3.5);

    cout << "c1 = "; output(c1); cout << endl;
    cout << "c2 = "; output(c2); cout << endl;
    cout << "c3 = "; output(c3); cout << endl;
    cout << "c4 = "; output(c4); cout << endl;
    cout << "c5.real = " << c5.get_real() 
         << ", c5.imag = " << c5.get_imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1.add(c2);
    cout << "c1 += c2, c1 = "; output(c1); cout << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << is_equal(c1, c2) << endl;
    cout << "c1 != c2 : " << is_not_equal(c1, c2) << endl;
    c4 = add(c2, c3);
    cout << "c4 = c2 + c3, c4 = "; output(c4); cout << endl;
}

void test_std_complex() {
    using std::cout;
    using std::endl;
    using std::boolalpha;

    cout << "std::complex<double>对象测试: " << endl;
    std::complex<double> c1;
    std::complex<double> c2(3, -4);
    std::complex<double> c3(c2);
    std::complex<double> c4 = c2;
    const std::complex<double> c5(3.5);

    cout << "c1 = " << c1 << endl;
    cout << "c2 = " << c2 << endl;
    cout << "c3 = " << c3 << endl;
    cout << "c4 = " << c4 << endl;

    cout << "c5.real = " << c5.real() 
         << ", c5.imag = " << c5.imag() << endl << endl;

    cout << "复数运算测试: " << endl;
    cout << "abs(c2) = " << abs(c2) << endl;
    c1 += c2;
    cout << "c1 += c2, c1 = " << c1 << endl;
    cout << boolalpha;
    cout << "c1 == c2 : " << (c1 == c2)<< endl;
    cout << "c1 != c2 : " << (c1 != c2) << endl;
    c4 = c2 + c3;
    cout << "c4 = c2 + c3, c4 = " << c4 << endl;
}

运行测试截图

2

问题1:比较自定义类 Complex 和标准库模板类 complex 的用法,在使用形式上,哪一种更简洁?函数和运算内在有关联吗?

标准库模板类complex的用法更简洁,因为它重载了运算符,可以直接使用+、-、==等数学运算符,更符合数学直觉。函数和运算内在确实有关联,运算符重载让代码更自然。

问题2:2-1:自定义 Complex 中, output/abs/add/ 等均设为友元,它们真的需要访问 私有数据 吗?(回答“是/否”并给出理由)

是。因为这些函数需要访问Complex类的私有数据成员real和imag来计算或输出结果。

2-2:标准库 std::complex 是否把 abs 设为友元?(查阅 cppreference后回答)

标准库std::complex没有把abs设为友元,因为std::abs是一个自由函数,通过公有接口访问复数数据。

2-3:什么时候才考虑使用 friend?总结你的思考。

当非成员函数需要访问类的私有成员,且该函数在逻辑上是类接口的一部分时。

问题3:如果构造对象时禁用=形式,即遇到 Complex c4 = c2; 编译报错,类Complex的设计应如何调整?

3.实验任务3

程序源代码

PlayerControl.h

#pragma once
#include <string>

enum class ControlType {Play, Pause, Next, Prev, Stop, Unknown};

class PlayerControl {
public:
    PlayerControl();

    ControlType parse(const std::string& control_str);   // 实现std::string --> ControlType转换
    void execute(ControlType cmd) const;   // 执行控制操作(以打印输出模拟)       

    static int get_cnt();

private:
    static int total_cnt;   
};

PlayerControl.cpp

#include "PlayerControl.h"
#include <iostream>
#include <algorithm>   

int PlayerControl::total_cnt = 0;

PlayerControl::PlayerControl() {}

// 待补足
// 1. 将输入字符串转为小写,实现大小写不敏感
// 2. 匹配"play"/"pause"/"next"/"prev"/"stop"并返回对应枚举
// 3. 未匹配的字符串返回ControlType::Unknown
// 4. 每次成功调用parse时递增total_cnt
ControlType PlayerControl::parse(const std::string& control_str) {
    std::string lower_str = control_str;
    std::transform(lower_str.begin(), lower_str.end(), lower_str.begin(),
                   [](unsigned char c){ return std::tolower(c); });

    if (lower_str == "play") {
        ++total_cnt;
        return ControlType::Play;
    } else if (lower_str == "pause") {
        ++total_cnt;
        return ControlType::Pause;
    } else if (lower_str == "next") {
        ++total_cnt;
        return ControlType::Next;
    } else if (lower_str == "prev") {
        ++total_cnt;
        return ControlType::Prev;
    } else if (lower_str == "stop") {
        ++total_cnt;
        return ControlType::Stop;
    } else {
        return ControlType::Unknown;
    }
}

void PlayerControl::execute(ControlType cmd) const {
    switch (cmd) {
        case ControlType::Play: std::cout << " [play] Playing music...\n"; break;
        case ControlType::Pause: std::cout << "[Pause] Music paused\n"; break;
        case ControlType::Next: std::cout << " [Next] Skipping to next track\n"; break;
        case ControlType::Prev: std::cout << "[Prev] Back to previous track\n"; break;
        case ControlType::Stop: std::cout << "[Stop] Music stopped\n"; break;
        default: std::cout << "[Error] unknown control\n"; break;
    }
}

int PlayerControl::get_cnt() {
    return total_cnt;
}

task3.cpp

#include "PlayerControl.h"
#include <iostream>

void test() {
    PlayerControl controller;
    std::string control_str;
    std::cout << "Enter Control: (play/pause/next/prev/stop/quit):\n";

    while(std::cin >> control_str) {
        if(control_str == "quit")
            break;

        ControlType cmd = controller.parse(control_str);
        controller.execute(cmd);
        std::cout << "Current Player control: " << PlayerControl::get_cnt() << "\n\n";
    }
}

int main() {
    test();
}

运行测试截图

3

4.实验任务4

Fraction.h

#pragma once
#include <string>

class Fraction {
public:
    Fraction(int up = 0, int down = 1);
    Fraction(const Fraction& other);

    int get_up() const;
    int get_down() const;
    Fraction negative() const;

    static const std::string doc;

private:
    int up, down;
    void simplify();
    static int gcd(int a, int b);

    friend void output(const Fraction& f);
    friend Fraction add(const Fraction& f1, const Fraction& f2);
    friend Fraction sub(const Fraction& f1, const Fraction& f2);
    friend Fraction mul(const Fraction& f1, const Fraction& f2);
    friend Fraction div(const Fraction& f1, const Fraction& f2);
};

void output(const Fraction& f);
Fraction add(const Fraction& f1, const Fraction& f2);
Fraction sub(const Fraction& f1, const Fraction& f2);
Fraction mul(const Fraction& f1, const Fraction& f2);
Fraction div(const Fraction& f1, const Fraction& f2);

Fraction.cpp

#include "Fraction.h"
#include <iostream>
#include <stdexcept>
#include <cmath>

const std::string Fraction::doc = 
    "Fraction类 v 0.01版. \n"
    "目前仅支持分数对象的构造、输出、加/减/乘/除运算.";

Fraction::Fraction(int u, int d) : up(u), down(d) {
    if (down == 0) {
        throw std::invalid_argument("分母不能为0");
    }
    simplify();
}

Fraction::Fraction(const Fraction& other) : up(other.up), down(other.down) {}

int Fraction::get_up() const {
    return up;
}

int Fraction::get_down() const {
    return down;
}

Fraction Fraction::negative() const {
    return Fraction(-up, down);
}

int Fraction::gcd(int a, int b) {
    a = std::abs(a);
    b = std::abs(b);
    while (b != 0) {
        int temp = b;
        b = a % b;
        a = temp;
    }
    return a;
}

void Fraction::simplify() {
    if (down < 0) {
        up = -up;
        down = -down;
    }

    int common = gcd(up, down);
    up /= common;
    down /= common;
}

void output(const Fraction& f) {
    if (f.down == 1) {
        std::cout << f.up;
    } else {
        std::cout << f.up << "/" << f.down;
    }
}

Fraction add(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.up * f2.down + f2.up * f1.down;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction sub(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.up * f2.down - f2.up * f1.down;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction mul(const Fraction& f1, const Fraction& f2) {
    int new_up = f1.up * f2.up;
    int new_down = f1.down * f2.down;
    return Fraction(new_up, new_down);
}

Fraction div(const Fraction& f1, const Fraction& f2) {
    if (f2.up == 0) {
        throw std::invalid_argument("除数不能为0");
    }
    int new_up = f1.up * f2.down;
    int new_down = f1.down * f2.up;
    return Fraction(new_up, new_down);
}

task4.cpp

#include "Fraction.h"
#include <iostream>

void test1();
void test2();

int main() {
    std::cout << "测试1: Fraction类基础功能测试\n";
    test1();

    std::cout << "\n测试2: 分母为0测试: \n";
    test2();
}

void test1() {
    using std::cout;
    using std::endl;   

    cout << "Fraction类测试: " << endl;
    cout << Fraction::doc << endl << endl;

    Fraction f1(5);
    Fraction f2(3, -4), f3(-18, 12);
    Fraction f4(f3);
    cout << "f1 = "; output(f1); cout << endl;
    cout << "f2 = "; output(f2); cout << endl;
    cout << "f3 = "; output(f3); cout << endl;
    cout << "f4 = "; output(f4); cout << endl;

    const Fraction f5(f4.negative());
    cout << "f5 = "; output(f5); cout << endl;
    cout << "f5.get_up() = " << f5.get_up() 
        << ", f5.get_down() = " << f5.get_down() << endl;

    cout << "f1 + f2 = "; output(add(f1, f2)); cout << endl;
    cout << "f1 - f2 = "; output(sub(f1, f2)); cout << endl;
    cout << "f1 * f2 = "; output(mul(f1, f2)); cout << endl;
    cout << "f1 / f2 = "; output(div(f1, f2)); cout << endl;
    cout << "f4 + f5 = "; output(add(f4, f5)); cout << endl;
}

void test2() {
    using std::cout;
    using std::endl;

    Fraction f6(42, 55), f7(0, 3);
    cout << "f6 = "; output(f6); cout << endl;
    cout << "f7 = "; output(f7); cout << endl;
    cout << "f6 / f7 = "; output(div(f6, f7)); cout << endl;
}

运行测试截图

4

问题回答:分数的输出和计算, output/add/sub/mul/div ,你选择的是哪一种设计方案?(友元/自由函数/命名空间+自由函数/类+static)

你的决策理由?如友元方案的优缺点、静态成员函数方案的适用场景、命名空间方案的考虑因素等。

我选择使用友元方案来实现分数的输出和计算函数。

决策理由:

友元方案的优点:可以直接访问类的私有成员,实现更高效,代码更简洁

友元方案的缺点:破坏了封装性,增加了类之间的耦合

静态成员函数方案:适用于不需要访问特定对象实例但需要访问类私有成员的场景

命名空间方案:适用于组织相关功能,但无法直接访问私有成员

对于分数运算,这些函数在逻辑上是分数类接口的重要组成部分,使用友元可以让实现更加自然和高效。

posted @ 2025-10-29 07:40  isaacsun18  阅读(7)  评论(1)    收藏  举报