wu-shi-yi-c
五十一(C)
设 \(f_{t,i}\) 表示第 \(t\) 轮 \(x=i\) 的概率。有
\[f_{t,i}=\sum_{j=i}^n\frac1{j+1}f_{t-1,j}
\]
设 \(F_t(x)=\sum_{i=0}^nf_{t,i}x^i\)。有
\[\begin{aligned}
F_t(x)&=\sum_{i=0}^nf_{t,i}x^i\\
&=\sum_{i=0}^n\sum_{j=i}^n\frac1{j+1}f_{t-1,j}x^i\\
&=\sum_{j=0}^n\frac1{j+1}f_{t-1,j}\sum_{i=0}^jx^i\\
&=\sum_{j=0}^n\frac1{j+1}f_{t-1,j}\frac{x^{j+1}-1}{x-1}\\
\end{aligned}\]
利用定积分展开 \(\frac{x^{j+1}-1}{j+1}\):
\[\begin{aligned}
F_t(x)&=\frac1{x-1}\sum_{j=0}^nf_{t-1,j}\int_{1}^xy^j\text{d}y\\
&=\frac1{x-1}\int_{1}^x\text{d}y\sum_{j=0}^nf_{t-1,j}y^j\\
&=\frac1{x-1}\int_{1}^xF_{t-1}(y)\text{d}y\\
\end{aligned}\]
\(1\) 到 \(x\) 难以处理,设
\[\begin{aligned}
G_t(x)&=F_t(x+1)\\
&=\frac1{x}\int_{1}^{x+1}F_{t-1}(y)\text{d}y\\
&=\frac1{x}\int_{0}^{x}G_{t-1}(y)\text{d}y\\
\end{aligned}\]
若设 \(G_t(x)=\sum_{i=0}^ng_{t,i}x^i\),则有
\[\begin{aligned}
G_t(x)&=\frac1{x}\int_{0}^{x}\sum_{i=0}^ng_{t-1,i}y^i\text{d}y\\
G_t(x)&=\frac1{x}\sum_{i=0}^ng_{t-1,i}\frac{x^{i+1}}{i+1}\\
G_t(x)&=\sum_{i=0}^ng_{t-1,i}\frac{x^i}{i+1}\\
\end{aligned}\]
因此有 \(g_{t,i}=\frac1{i+1}g_{t-1,i}\),即 \(g_{t,i}=\frac{g_{0,i}}{(i+1)^t}\)。
考虑求 \(g_0\),有
\[G_t(x)=F_t(x+1)
\]
于是
\[\sum_{i=0}^ng_{t,i}x^i=\sum_{i=0}^nf_{t,i}(x+1)^i
\]
展开
\[\begin{aligned}
\sum_{i=0}^ng_{t,i}x^i
&=\sum_{i=0}^nf_{t,i}\sum_{j=0}^ix^j\binom{i}{j}\\
&=\sum_{j=0}^nx^j\sum_{i=j}^nf_{t,i}\binom ij\\
\end{aligned}\]
因此
\[g_{t,i}=\sum_{j=i}^nf_{t,j}\binom ji
\]
可以把组合数拆开,差卷积计算 \(g_0\)。
求得 \(g_m\) 之后还要求 \(f_m\),有二项式反演
\[f_{t,i}=\sum_{j=i}^ng_{t,j}\binom ji(-1)^{j-i}
\]
仍然是差卷积。
 
                    
                     
                    
                 
                    
                
 
                
            
         
         浙公网安备 33010602011771号
浙公网安备 33010602011771号