p4449-solution
P4449 Solution
\[\begin{aligned}
\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^k&=\sum_{d=1}^n\sum_{i=1}^n\sum_{j=1}^md^k[\gcd(i,j)=d]\\
&=\sum_{d=1}^n\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}d^k[\gcd(i,j)=1]\\
&=\sum_{d=1}^n\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}d^k\sum_{s|i,s|j}\mu(s)\\
&=\sum_{d=1}^nd^k\sum_{s=1}^{n/d}\mu(s)\lfloor\frac n{ds}\rfloor\lfloor\frac m{ds}\rfloor\\
&=\sum_{t=1}^n\lfloor\frac n t\rfloor\lfloor\frac m t\rfloor\sum_{d|t}d^k\mu(\frac t d)
\end{aligned}\]
令 \(f(n)=\sum_{d|n}d^k\mu(\frac n d)\),这个显然可以线性筛
具体地,对于质数 \(p\),\(f(p)=p^k-1\),\(f(p^r)=p^{kr}-p^{(k-1)r}\),即 \(f(p^r)=p^kf(p^{r-1})\)
线性筛再分块即可。

浙公网安备 33010602011771号