contest2590-c-solution
Contest2590 C Solution
\[\begin{aligned}
\sum_{i=0}^ni^{\overline m}\binom n i
&=\sum_{i=0}^n\frac{(i+m-1)!}{(i-1)!}\binom n i\\
&=m!\sum_{i=0}^n\binom{i+m-1}{m}\binom n i\\
\end{aligned}\]
考虑范德蒙德卷积,将 \(\binom{i+m-1}{m}\) 展开。
\[\begin{aligned}
\sum_{i=0}^ni^{\overline m}\binom n i
&=m!\sum_{i=0}^n\binom n i\sum_{j=0}^m\binom i j\binom{m-1}{m-j}\\
&=m!\sum_{j=0}^m\binom{m-1}{m-j}\sum_{i=0}^n\binom n i\binom i j\\
&=m!\sum_{j=0}^m\binom{m-1}{m-j}\sum_{i=0}^n\frac{n!i!}{i!j!(n-i)!(i-j)!}\\
&=m!\sum_{j=0}^m\binom{m-1}{m-j}\sum_{i=0}^n\frac{n!(n-j)!}{j!(n-i)!(i-j)!(n-j)!}\\
&=m!\sum_{j=0}^m\binom{m-1}{m-j}\binom n j\sum_{i=0}^n\binom{n-j}{n-i}\\
&=m!\sum_{j=0}^m\binom{m-1}{m-j}\binom n j2^{n-j}\\
\end{aligned}\]
\(\mathcal O(m)\) 计算即可。

浙公网安备 33010602011771号