110. 平衡二叉树

一、题目

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

二、思路

自底向上递归的做法类似于后序遍历,对于当前遍历到的节点,先递归地判断其左右子树是否平衡,再判断以当前节点为根的子树是否平衡。如果一棵子树是平衡的,则返回其高度(高度一定是非负整数),否则返回 −1。如果存在一棵子树不平衡,则整个二叉树一定不平衡。

三、代码

class Solution {
public:
    int height(TreeNode* root) {
        if (root == NULL) {
            return 0;
        }
        int leftHeight = height(root->left);
        int rightHeight = height(root->right);
        if (leftHeight == -1 || rightHeight == -1 || abs(leftHeight - rightHeight) > 1) {
            return -1;
        } else {
            return max(leftHeight, rightHeight) + 1;
        }
    }

    bool isBalanced(TreeNode* root) {
        return height(root) >= 0;
    }
};

四、分析

复杂度分析

时间复杂度:O(n),其中 n 是二叉树中的节点个数。使用自底向上的递归,每个节点的计算高度和判断是否平衡都只需要处理一次,最坏情况下需要遍历二叉树中的所有节点,因此时间复杂度是 O(n)。

空间复杂度:O(n),其中 n 是二叉树中的节点个数。空间复杂度主要取决于递归调用的层数,递归调用的层数不会超过 n。

 

posted @ 2023-10-13 20:33  ImreW  阅读(32)  评论(0)    收藏  举报