gcd,exgcd,crt
gcd证明
\[\begin{align*}
&d=gcd(x,y)\\
&\therefore x|d,y|d\\
&x=ad,y=bd\\
&x\%y=ad\%bd=(a\%b)*d
\\&\because(a\%b)\not\mid b
\\&\therefore gcd(a,b)=gcd(b,a\%b)=1
\\&\therefore gcd(x,y)=gcd(y,x\%y)
\end{align*}
\]
exgcd
\[\begin{align}ax+by&=gcd(a,b)\nonumber\\bx'+(a\%b)y'&=gcd(b,a\%b)\nonumber\\bx'+(a-[\frac{a}{b}]*b)*y'&=gcd(b,a\%b)\nonumber\\ay'+b(x'-[\frac{a}{b}]*by')&=gcd(b,a\%b)\nonumber\end{align}\\\therefore ax+by=ay'+b(x'-[\frac{a}{b}]*by')\\\therefore x=y',y=x'-[\frac{a}{b}]*by'
\]
方程\(ax+by=c\)当且仅当\(c\mid gcd(a,b)\)
\[ax'+by'=gcd(a,b)\\
a\frac{x'c}{gcd(a,b)}+b\frac{y'c}{gcd(a,b)}=c
\]
crt
对于形如
\[\left\{
\begin{align}
x&\equiv a_1(mod\ n_1)\nonumber\\
x&\equiv a_2(mod\ n_2)\nonumber\\
x&\equiv a_3(mod\ n_3)\nonumber\\
&~~\vdots\nonumber\\
x&\equiv a_k(mod\ n_k)\nonumber\\
\end{align}
\right.
\]
的线性同余方程组,设
\[n=\prod_{i=1}^k n_i\\m_i=\frac{n}{n_i}\\m_i^{-1}\equiv m_i(mod\ n_i)\\c_i=m_im_i^{-1}\nonumber
\]
有
\[x\equiv\sum_{i=1}^{k}a_ic_i(mod\ n)
\]
证明:我们需要证明x符合上面的所有方程式,易知当\(j\neq i\)时,该项\(mod\ n_i=0\)
\[\begin{align}
x&\equiv\sum_{j=1}^{k}a_jc_j(mod\ n_i)\\
&\equiv a_ic_i(mod\ n_i)
\\&\equiv a_i(mod\ n_i)
\end{align}
\]
证毕.

浙公网安备 33010602011771号