P4132算不出的等式
\[\begin{align*}
&\sum_{k=1}^{\frac{p-1}{2}} \biggl\lfloor\frac{kq}{p}\biggr\rfloor+\sum_{k=1}^{\frac{q-1}{2}} \biggl\lfloor\frac{kp}{q}\biggr\rfloor\\
=&\sum_{k=1}^{\frac{p-1}{2}} \biggl(\frac{kq-kq\ mod\ p}{p}\biggr)+\sum_{k=1}^{\frac{q-1}{2}} \biggl\lfloor\frac{kp}{q}\biggr\rfloor\\
=&\sum_{k=1}^{\frac{p-1}{2}}\frac{kq}{p}-\sum_{k=1}^{\frac{p-1}{2}}\frac{kq\ mod\ p}{p}+\sum_{k=1}^{\frac{q-1}{2}} \biggl\lfloor\frac{kp}{q}\biggr\rfloor\\
\because&\sum_{k=1}^{\frac{p-1}{2}}\frac{kq\ mod\ p}{p}\\
=&\frac{\sum_{k=1}^{\frac{p-1}{2}}kq-\sum_{k=1}^\frac{q-1}{2}(p\cdot(\frac{p-1}{2}-\lfloor\frac{kp}{q}\rfloor))}{p}\\
=&\sum_{k=1}^{\frac{p-1}{2}}\frac{kq}{p}-\sum_{k=1}^\frac{q-1}{2}(\frac{p-1}{2}-\lfloor\frac{kp}{q}\rfloor)\\
\therefore &\text{ 原式}=\frac{p-1}{2}\cdot\frac{q-1}{2}
\end{align*}
\]

浙公网安备 33010602011771号