import scipy.io as scio
data = scio.loadmat('1.mat')
test_data = data['yeast_f1_test_feature']
test_label = data['yeast_f1_test_label']
train_data = data['yeast_f1_train_feature']
train_label = data['yeast_f1_train_label']
'''
算法包调用
'''
from sklearn import tree
from sklearn import svm
'''
'''
import numpy as np
import pandas as pd
clf = tree.DecisionTreeClassifier(max_depth=55) #决策树
#clf=svm.SVC(decision_function_shape='ovo')
clf.fit(train_data,train_label)
predict = clf.predict(test_data)
result = pd.DataFrame()
result['predict'] = predict
result['test_label'] = test_label.reshape(test_label.shape[0],1)
from sklearn.metrics import accuracy_score #准确率
from sklearn.metrics import precision_score #查准率 精确率
from sklearn.metrics import recall_score #灵敏度 召回率
from sklearn.metrics import matthews_corrcoef #马修斯相关系数
print('总体预测精度: '+str(accuracy_score(result['test_label'],result['predict'])))
print('精度: '+str(precision_score(result['test_label'],result['predict'])))
print('灵敏度: '+str(recall_score(result['test_label'],result['predict'])))
print('马修系数: '+str(matthews_corrcoef(result['test_label'],result['predict'])))