数据挖掘作业:财政收入影响因素分析及预测
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
inputfile = 'D:/anaconda/data/data.csv'
data = pd.read_csv(inputfile)
description = [data.min(),data.max(),data.mean(),data.std()]
description = pd.DataFrame(description,index = ['Min','Max','Mean','STD']).T
print('描述性统计结果:\n',np.round(description,2))
corr = data.corr(method = 'pearson')
print('相关系数矩阵为:\n',np.round(corr,2))
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.subplots(figsize = (10,10))
sns.heatmap(corr,annot = True,vmax = 1,square = True,cmap = 'Greens')
plt.title('学号2020310143040')
plt.show()
plt.close
运行结果:

1 import numpy as np 2 import pandas as pd 3 from sklearn.linear_model import Lasso 4 5 inputfile = 'D:/anaconda/data/data.csv' 6 data = pd.read_csv(inputfile) 7 lasso = Lasso(1000) 8 lasso.fit(data.iloc[:,0:13],data['y']) 9 print('相关系数为:',np.round(lasso.coef_,5)) 10 print('相关系数非零个数为:',np.sum(lasso.coef_ != 0)) 11 mask = lasso.coef_ != 0 12 mask = np.append(mask,True) 13 print('相关系数是否为零:',mask) 14 outputfile = 'D:/anaconda/data/new_reg_data.csv' 15 new_reg_data = data.iloc[:,mask] 16 new_reg_data.to_csv(outputfile) 17 print('输出数据的维度为:',new_reg_data.shape)
运行结果:

1 # 代码6-5 2 3 import sys 4 sys.path.append('D:/anaconda/Scripts') # 设置路径 5 import numpy as np 6 import pandas as pd 7 from GM11 import GM11 # 引入自编的灰色预测函数 8 9 inputfile1 = 'D:/anaconda/data/new_reg_data.csv' # 输入的数据文件 10 inputfile2 = 'D:/anaconda/data/data.csv' # 输入的数据文件 11 new_reg_data = pd.read_csv(inputfile1) # 读取经过特征选择后的数据 12 data = pd.read_csv(inputfile2) # 读取总的数据 13 new_reg_data.index = range(1994, 2014) 14 new_reg_data.loc[2014] = None 15 new_reg_data.loc[2015] = None 16 l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] 17 for i in l: 18 f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0] 19 new_reg_data.loc[2014,i] = f(len(new_reg_data)-1) # 2014年预测结果 20 new_reg_data.loc[2015,i] = f(len(new_reg_data)) # 2015年预测结果 21 new_reg_data[i] = new_reg_data[i].round(2) # 保留两位小数 22 outputfile = 'D:/anaconda/data/new_reg_data_GM11.xls' # 灰色预测后保存的路径 23 y = list(data['y'].values) # 提取财政收入列,合并至新数据框中 24 y.extend([np.nan,np.nan]) 25 new_reg_data['y'] = y 26 new_reg_data.to_excel(outputfile) # 结果输出 27 print('预测结果为:\n',new_reg_data.loc[2014:2015,:]) # 预测结果展示 28 29 30 31 # 代码6-6 32 import numpy as np 33 import pandas as pd 34 import matplotlib.pyplot as plt 35 from sklearn.svm import LinearSVR 36 37 inputfile = 'D:/anaconda/data/new_reg_data_GM11.xls' # 灰色预测后保存的路径 38 data = pd.read_excel((inputfile),index_col = 0,header = 0) # 读取数据 39 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13'] # 属性所在列 40 data_train = data.loc[range(1994,2014)].copy() # 取2014年前的数据建模 41 data_mean = data_train.mean() 42 data_std = data_train.std() 43 data_train = (data_train - data_mean)/data_std # 数据标准化 44 x_train = data_train[feature].values # 属性数据 45 y_train = data_train['y'].values # 标签数据 46 47 linearsvr = LinearSVR() # 调用LinearSVR()函数 48 linearsvr.fit(x_train,y_train) 49 x = ((data[feature] - data_mean[feature])/data_std[feature]).values # 预测,并还原结果。 50 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y'] 51 outputfile = 'D:/anaconda/data/new_reg_data_GM11_revenue.xls' # SVR预测后保存的结果 52 data.to_excel(outputfile) 53 54 print('真实值与预测值分别为:\n',data[['y','y_pred']]) 55 plt.rcParams['font.sans-serif'] = 'SimHei' 56 fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*']) # 画出预测结果图 57 plt.title('学号2020310143040') 58 plt.show()
运行结果:

浙公网安备 33010602011771号