• 博客园logo
  • 会员
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • HarmonyOS
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录

33wood

  • 博客园
  • 联系
  • 订阅
  • 管理

公告

View Post

数据挖掘作业:财政收入影响因素分析及预测

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
inputfile = 'D:/anaconda/data/data.csv'
data = pd.read_csv(inputfile)
description = [data.min(),data.max(),data.mean(),data.std()]
description = pd.DataFrame(description,index = ['Min','Max','Mean','STD']).T
print('描述性统计结果:\n',np.round(description,2))

corr = data.corr(method = 'pearson')
print('相关系数矩阵为:\n',np.round(corr,2))
plt.rcParams['font.sans-serif'] = 'SimHei'
plt.subplots(figsize = (10,10))
sns.heatmap(corr,annot = True,vmax = 1,square = True,cmap = 'Greens')
plt.title('学号2020310143040')
plt.show()
plt.close

运行结果:

 

 1 import numpy as np
 2 import pandas as pd
 3 from sklearn.linear_model import Lasso
 4 
 5 inputfile = 'D:/anaconda/data/data.csv'
 6 data = pd.read_csv(inputfile)
 7 lasso = Lasso(1000)
 8 lasso.fit(data.iloc[:,0:13],data['y'])
 9 print('相关系数为:',np.round(lasso.coef_,5))
10 print('相关系数非零个数为:',np.sum(lasso.coef_ != 0))
11 mask = lasso.coef_ != 0
12 mask = np.append(mask,True)
13 print('相关系数是否为零:',mask)
14 outputfile = 'D:/anaconda/data/new_reg_data.csv'
15 new_reg_data = data.iloc[:,mask]
16 new_reg_data.to_csv(outputfile)
17 print('输出数据的维度为:',new_reg_data.shape)

运行结果:

 

 

 

 1 # 代码6-5
 2 
 3 import sys
 4 sys.path.append('D:/anaconda/Scripts')  # 设置路径
 5 import numpy as np
 6 import pandas as pd
 7 from GM11 import GM11  # 引入自编的灰色预测函数
 8 
 9 inputfile1 = 'D:/anaconda/data/new_reg_data.csv'  # 输入的数据文件
10 inputfile2 = 'D:/anaconda/data/data.csv'  # 输入的数据文件
11 new_reg_data = pd.read_csv(inputfile1)  # 读取经过特征选择后的数据
12 data = pd.read_csv(inputfile2)  # 读取总的数据
13 new_reg_data.index = range(1994, 2014)
14 new_reg_data.loc[2014] = None
15 new_reg_data.loc[2015] = None
16 l = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']
17 for i in l:
18   f = GM11(new_reg_data.loc[range(1994, 2014),i].values)[0]
19   new_reg_data.loc[2014,i] = f(len(new_reg_data)-1)  # 2014年预测结果
20   new_reg_data.loc[2015,i] = f(len(new_reg_data))  # 2015年预测结果
21   new_reg_data[i] = new_reg_data[i].round(2)  # 保留两位小数
22 outputfile = 'D:/anaconda/data/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
23 y = list(data['y'].values)  # 提取财政收入列,合并至新数据框中
24 y.extend([np.nan,np.nan])
25 new_reg_data['y'] = y
26 new_reg_data.to_excel(outputfile)  # 结果输出
27 print('预测结果为:\n',new_reg_data.loc[2014:2015,:])  # 预测结果展示
28 
29 
30 
31 # 代码6-6
32 import numpy as np
33 import pandas as pd
34 import matplotlib.pyplot as plt
35 from sklearn.svm import LinearSVR
36 
37 inputfile = 'D:/anaconda/data/new_reg_data_GM11.xls'  # 灰色预测后保存的路径
38 data = pd.read_excel((inputfile),index_col = 0,header = 0)  # 读取数据
39 feature = ['x1', 'x3', 'x4', 'x5', 'x6', 'x7', 'x8', 'x13']  # 属性所在列
40 data_train = data.loc[range(1994,2014)].copy()  # 取2014年前的数据建模
41 data_mean = data_train.mean()
42 data_std = data_train.std()
43 data_train = (data_train - data_mean)/data_std  # 数据标准化
44 x_train = data_train[feature].values  # 属性数据
45 y_train = data_train['y'].values  # 标签数据
46 
47 linearsvr = LinearSVR()  # 调用LinearSVR()函数
48 linearsvr.fit(x_train,y_train)
49 x = ((data[feature] - data_mean[feature])/data_std[feature]).values  # 预测,并还原结果。
50 data['y_pred'] = linearsvr.predict(x) * data_std['y'] + data_mean['y']
51 outputfile = 'D:/anaconda/data/new_reg_data_GM11_revenue.xls'  # SVR预测后保存的结果
52 data.to_excel(outputfile)
53 
54 print('真实值与预测值分别为:\n',data[['y','y_pred']])
55 plt.rcParams['font.sans-serif'] = 'SimHei'
56 fig = data[['y','y_pred']].plot(subplots = True, style=['b-o','r-*'])  # 画出预测结果图
57 plt.title('学号2020310143040')
58 plt.show()

运行结果:

 

posted on 2023-03-04 12:33  33wood  阅读(101)  评论(0)    收藏  举报

刷新页面返回顶部
 
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3