动态规划-划分数组的最大和 Split Array Largest Sum
2019-10-14 22:13:18
问题描述:

问题求解:
解法一:动态规划
这种数组划分的题目基本都可以使用dp来解决,核心的思路就是先维护低的划分,再在中间找分割点加入新的划分。
public int splitArray(int[] nums, int m) {
int n = nums.length;
long[][] dp = new long[m + 1][n];
long[] presum = new long[n];
presum[0] = nums[0];
for (int i = 1; i < n; i++) presum[i] = presum[i - 1] + nums[i];
for (int i = 0; i < n; i++) dp[1][i] = presum[i];
for (int i = 2; i <= m; i++) {
for (int j = i - 1; j < n; j++) {
dp[i][j] = presum[n - 1];
for (int k = i - 2; k < j; k++) {
dp[i][j] = Math.min(dp[i][j], Math.max(dp[i - 1][k], presum[j] - presum[k]));
}
}
}
return (int)dp[m][n - 1];
}
解法二:二分搜索
最小化最大的子串和是典型的二分搜索的问题描述。
求最小值的模版是(l, r],并不断维护。
public int splitArray(int[] nums, int m) {
long l = 0;
long r = 0;
for (int num : nums) r += num;
while (r - l > 1) {
long mid = l + (r - l) / 2;
int k = helper(nums, mid);
if (k <= m) r = mid;
else l = mid;
}
return (int)r;
}
private int helper(int[] nums, long target) {
int n = nums.length;
int res = 0;
for (int i = 0; i < n;) {
long curr = 0;
while (i < n) {
curr += nums[i];
if (curr > target) {
curr -= nums[i];
break;
}
else i += 1;
}
if (curr == 0) return n + 1;
res += 1;
}
return res;
}

浙公网安备 33010602011771号