k-means算法之见解(一)

Posted on 2018-10-23 21:47  时光top  阅读(604)  评论(0编辑  收藏  举报

k-menas算法之见解

  • 主要内容:

  一、引言

  二、k-means聚类算法

一、引言:

  先说个K-means算法很高大上的用处,来开始新的算法学习。美国竞选总统,选票由公民投出,总统由大家决定。在2004年出现候选人得票数非常接近,所以1%的选民手中的选票非常关键,决定着总统的归属。那么如何找出这类选民,以及如何在有限的预算下采取措施来吸引他们呢?

  答案就是聚类,这就要说到本次要讲到的K-means算法了。通过收集用户的信息,可以同时收集用户满意和不满意的信息;然后将这些信息输入到聚类算法中,就会得到很多的簇;接着,对聚类结果中的每一个簇(最好是最大簇),精心构造能吸引该簇选民的信息,加以引导;最后,再开展竞选活动并观察上述做法是否有效。而,一旦算法有效,那么就会对选举结果产生非常大的影响,甚至,直接决定了最后的总统归属。

    可见,聚类算法是一个非常了不起的算法。下面,我们就正式开始今天的新算法,K-means聚类算法。

二、k-means聚类算法:

1、 K-means算法的相关描述

  聚类是一种无监督的学习,它将相似的对象归到同一簇中。聚类的方法几乎可以应用所有对象,簇内的对象越相似,聚类的效果就越好。K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。

  聚类和分类最大的不同在于,分类的目标是事先已知的,而聚类则不一样,聚类事先不知道目标变量是什么,类别没有像分类那样被预先定义出来,所以,聚类有时也叫无监督学习。

  聚类分析试图将相似的对象归入同一簇,将不相似的对象归为不同簇,那么,显然需要一种合适的相似度计算方法,我们已知的有很多相似度的计算方法,比如欧氏距离,余弦距离,汉明距离等。事实上,我们应该根据具体的应用来选取合适的相似度计算方法。

  当然,任何一种算法都有一定的缺陷,没有一种算法时完美的,有的只是人类不断追求完美,不断创新的意志。K-means算法也有它的缺陷,但是我们可以通过一些后处理来得到更好的聚类结果,这些在后面都会一一降到。

  K-means算法虽然比较容易实现,但是其可能收敛到局部最优解,且在大规模数据集上收敛速度相对较慢。

2、聚类的定义

  聚类就是对大量未知标注的数据集,按数据 的内在相似性将数据集划分为多个类别,使类别内的数据相似度较大而类别间的数据相似度较小 。

3、聚类的基本思想

  给定一个有N个对象的数据集,划分聚类技术将构 造数据的k个划分,每一个划分代表一个簇, k≤n。也就是说,聚类将数据划分为k个簇,而且 这k个划分满足下列条件:

     每一个簇至少包含一个对象

     每一个对象属于且仅属于一个簇

   基本思想:对于给定的k,算法首先给出一个初始 的划分方法,以后通过反复迭代的方法改变划分, 使得每一次改进之后的划分方案都较前一次更好。

4、k-means算法简介

  k-means算法是一种聚类算法,所谓聚类,即根据相似性原则,将具有较高相似度的数据对象划分至同一类簇,将具有较高相异度的数据对象划分至不同类簇。聚类与分类最大的区别在于,聚类过程为无监督过程,即待处理数据对象没有任何先验知识,而分类过程为有监督过程,即存在有先验知识的训练数据集。
  k-means算法中的k代表类簇个数,means代表类簇内数据对象的均值(这种均值是一种对类簇中心的描述),因此,k-means算法又称为k-均值算法。k-means算法是一种基于划分的聚类算法,以距离作为数据对象间相似性度量的标准,即数据对象间的距离越小,则它们的相似性越高,则它们越有可能在同一个类簇。数据对象间距离的计算有很多种,k-means算法通常采用欧氏距离来计算数据对象间的距离。
    K-means算法,也被称为k-平均或k-均值,是一种 得到最广泛使用的聚类算法,或者成为其他聚类算 法的基础。 

 5、 K-means算法的工作流程

  首先,随机确定k个初始点的质心;然后将数据集中的每一个点分配到一个簇中,即为每一个点找到距其最近的质心,并将其分配给该质心所对应的簇;该步完成后,每一个簇的质心更新为该簇所有点的平均值。伪代码如下:

复制代码
创建k个点作为起始质心,可以随机选择(位于数据边界内)
  当任意一个点的簇分配结果发生改变时
    对数据集中每一个点
        对每个质心
          计算质心与数据点之间的距离
        将数据点分配到距其最近的簇
    对每一个簇,计算簇中所有点的均值并将均值作为质心
复制代码

  再看实际的代码:

复制代码
#导入numpy库
from numpy import *
#K-均值聚类辅助函数

#文本数据解析函数
def numpy import *
    dataMat=[]
    fr=open(fileName)
    for line in fr.readlines():
        curLine=line.strip().split('\t')
        #将每一行的数据映射成float型
        fltLine=map(float,curLine)
        dataMat.append(fltLine)
    return dataMat

#数据向量计算欧式距离    
def distEclud(vecA,vecB):
    return sqrt(sum(power(vecA-vecB,2)))

#随机初始化K个质心(质心满足数据边界之内)
def randCent(dataSet,k):
    #得到数据样本的维度
    n=shape(dataSet)[1]
    #初始化为一个(k,n)的矩阵
    centroids=mat(zeros((k,n)))
    #遍历数据集的每一维度
    for j in range(n):
        #得到该列数据的最小值
        minJ=min(dataSet[:,j])
        #得到该列数据的范围(最大值-最小值)
        rangeJ=float(max(dataSet[:,j])-minJ)
        #k个质心向量的第j维数据值随机为位于(最小值,最大值)内的某一值
        centroids[:,j]=minJ+rangeJ*random.rand(k,1)
    #返回初始化得到的k个质心向量
    return centroids
    
#k-均值聚类算法
#@dataSet:聚类数据集
#@k:用户指定的k个类
#@distMeas:距离计算方法,默认欧氏距离distEclud()
#@createCent:获得k个质心的方法,默认随机获取randCent()
def kMeans(dataSet,k,distMeas=distEclud,createCent=randCent):
    #获取数据集样本数
    m=shape(dataSet)[0]
    #初始化一个(m,2)的矩阵
    clusterAssment=mat(zeros((m,2)))
    #创建初始的k个质心向量
    centroids=createCent(dataSet,k)
    #聚类结果是否发生变化的布尔类型
    clusterChanged=True
    #只要聚类结果一直发生变化,就一直执行聚类算法,直至所有数据点聚类结果不变化
    while clusterChanged:
        #聚类结果变化布尔类型置为false
        clusterChanged=False
        #遍历数据集每一个样本向量
        for i in range(m):
            #初始化最小距离最正无穷;最小距离对应索引为-1
            minDist=inf;minIndex=-1
            #循环k个类的质心
            for j in range(k):
                #计算数据点到质心的欧氏距离
                distJI=distMeas(centroids[j,:],dataSet[i,:])
                #如果距离小于当前最小距离
                if distJI<minDist:
                    #当前距离定为当前最小距离;最小距离对应索引对应为j(第j个类)
                    minDist=distJI;minIndex=j
        #当前聚类结果中第i个样本的聚类结果发生变化:布尔类型置为true,继续聚类算法
        if clusterAssment[i,0] !=minIndex:clusterChanged=True
        #更新当前变化样本的聚类结果和平方误差
        clusterAssment[i,:]=minIndex,minDist**2
    #打印k-均值聚类的质心
    print centroids
    #遍历每一个质心
    for cent in range(k):
        #将数据集中所有属于当前质心类的样本通过条件过滤筛选出来
        ptsInClust=dataSet[nonzero(clusterAssment[:,0].A==cent)[0]]
        #计算这些数据的均值(axis=0:求列的均值),作为该类质心向量
        centroids[cent,:]=mean(ptsInClust,axis=0)
    #返回k个聚类,聚类结果及误差
    return centroids,clusterAssment
复制代码

  需要说明的是,在算法中,相似度的计算方法默认的是欧氏距离计算,当然也可以使用其他相似度计算函数,比如余弦距离;算法中,k个类的初始化方式为随机初始化,并且初始化的质心必须在整个数据集的边界之内,这可以通过找到数据集每一维的最大值和最小值;然后最小值+取值范围*0到1的随机数,来确保随机点在数据边界之内。

  在实际的K-means算法中,采用计算质心-分配-重新计算质心的方式反复迭代,算法停止的条件是,当然数据集所有的点分配的距其最近的簇不在发生变化时,就停止分配,更新所有簇的质心后,返回k个类的质心(一般是向量的形式)组成的质心列表,以及存储各个数据点的分类结果和误差距离的平方的二维矩阵。

  上面返回的结果中,之所以存储每个数据点距离其质心误差距离平方,是便于后续的算法预处理。因为K-means算法采取的是随机初始化k个簇的质心的方式,因此聚类效果又可能陷入局部最优解的情况,局部最优解虽然效果不错,但不如全局最优解的聚类效果更好。所以,后续会在算法结束后,采取相应的后处理,使算法跳出局部最优解,达到全局最优解,获得最好的聚类效果。

  可以看一个聚类的例子:

    

    

    

    

    处理后提高聚类性能

      

  有时候当我们观察聚类的结果图时,发现聚类的效果没有那么好,如上图所示,K-means算法在k值选取为3时的聚类结果,我们发现,算法能够收敛但效果较差。显然,这种情况的原因是,算法收敛到了局部最小值,而并不是全局最小值,局部最小值显然没有全局最小值的结果好。

  那么,既然知道了算法已经陷入了局部最小值,如何才能够进一步提升K-means算法的效果呢?

  一种用于度量聚类效果的指标是SSE,即误差平方和, 为所有簇中的全部数据点到簇中心的误差距离的平方累加和。SSE的值如果越小,表示数据点越接近于它们的簇中心,即质心,聚类效果也越好。因为,对误差取平方后,就会更加重视那些远离中心的数据点。

  显然,我们知道了一种改善聚类效果的做法就是降低SSE,那么如何在保持簇数目不变的情况下提高簇的质量呢?

  一种方法是:我们可以将具有最大SSE值得簇划分为两个簇(因为,SSE最大的簇一般情况下,意味着簇内的数据点距离簇中心较远),具体地,可以将最大簇包含的点过滤出来并在这些点上运行K-means算法,其中k设为2.

  同时,当把最大的簇(上图中的下半部分)分为两个簇之后,为了保证簇的数目是不变的,我们可以再合并两个簇。具体地:

  一方面我们可以合并两个最近的质心所对应的簇,即计算所有质心之间的距离,合并质心距离最近的两个质心所对应的簇。

  另一方面,我们可以合并两个使得SSE增幅最小的簇,显然,合并两个簇之后SSE的值会有所上升,那么为了最好的聚类效果,应该尽可能使总的SSE值小,所以就选择合并两个簇后SSE涨幅最小的簇。具体地,就是计算合并任意两个簇之后的总得SSE,选取合并后最小的SSE对应的两个簇进行合并。这样,就可以满足簇的数目不变。

  上面,是对已经聚类完成的结果进行改善的方法,在不改变k值的情况下,上述方法能够起到一定的作用,会使得聚类效果得到一定的改善。那么,下面要讲到的是一种克服算法收敛于局部最小值问题的K-means算法。即二分k-均值算法。

6、二分K-means算法

  二分K-means算法首先将所有点作为一个簇,然后将簇一分为二。之后选择其中一个簇继续进行划分,选择哪一个簇取决于对其进行划分是否能够最大程度的降低SSE的值。上述划分过程不断重复,直至划分的簇的数目达到用户指定的值为止。

  二分K-means算法的伪代码如下:

复制代码
将所有点看成一个簇
当簇数目小于k时
对于每一个簇
    计算总误差
    在给定的簇上面进行k-均值聚类(k=2)
    计算将该簇一分为二之后的总误差
选择使得总误差最小的簇进行划分
复制代码

  当然,也可以选择SSE最大的簇进行划分,知道簇数目达到用户指定的数目为止。下面看具体的代码:

复制代码
#二分K-均值聚类算法
#@dataSet:待聚类数据集
#@k:用户指定的聚类个数
#@distMeas:用户指定的距离计算方法,默认为欧式距离计算
def biKmeans(dataSet,k,distMeas=distEclud):
    #获得数据集的样本数
    m=shape(dataSet)[0]
    #初始化一个元素均值0的(m,2)矩阵
    clusterAssment=mat(zeros((m,2)))
    #获取数据集每一列数据的均值,组成一个长为列数的列表
    centroid0=mean(dataSet,axis=0).tolist()[0]
    #当前聚类列表为将数据集聚为一类
    centList=[centroid0]
    #遍历每个数据集样本
    for j in range(m):
        #计算当前聚为一类时各个数据点距离质心的平方距离
        clusterAssment[j,1]=distMeas(mat(centroid0),dataSet[j,:])**2
    #循环,直至二分k-均值达到k类为止
    while (len(centList)<k):
        #将当前最小平方误差置为正无穷
        lowerSSE=inf
        #遍历当前每个聚类
        for i in range(len(centList)):
            #通过数组过滤筛选出属于第i类的数据集合
            ptsInCurrCluster=\
                dataSet[nonzero(clusterAssment[:,0].A==i)[0],:]
            #对该类利用二分k-均值算法进行划分,返回划分后结果,及误差
            centroidMat,splitClustAss=\
                kMeans(ptsInCurrCluster,2,distMeas)
            #计算该类划分后两个类的误差平方和
            sseSplit=sum(splitClustAss[:,1])
            #计算数据集中不属于该类的数据的误差平方和
            sseNotSplit=\
                sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1])
            #打印这两项误差值
            print('sseSplit,and notSplit:',%(sseSplit,sseNotSplit))
            #划分第i类后总误差小于当前最小总误差
            if(sseSplit+sseNotSplit)<lowerSSE:
                #第i类作为本次划分类
                bestCentToSplit=i
                #第i类划分后得到的两个质心向量
                bestNewCents=centroidMat
                #复制第i类中数据点的聚类结果即误差值
                bestClustAss=splitClustAss.copy()
                #将划分第i类后的总误差作为当前最小误差
                lowerSSE=sseSplit+sseNotSplit
        #数组过滤筛选出本次2-均值聚类划分后类编号为1数据点,将这些数据点类编号变为
        #当前类个数+1,作为新的一个聚类
        bestClustAss[nonzero(bestClustAss[:,0].A==1)[0],0]=\    
                len(centList)
        #同理,将划分数据集中类编号为0的数据点的类编号仍置为被划分的类编号,使类编号
        #连续不出现空缺
        bestClustAss[nonzero(bestClustAss[:,0].A==0)[0],0]=\    
                bestCentToSplit
        #打印本次执行2-均值聚类算法的类
        print('the bestCentToSplit is:',%bestCentToSplit)
        #打印被划分的类的数据个数
        print('the len of bestClustAss is:',%(len(bestClustAss)))
        #更新质心列表中的变化后的质心向量
        centList[bestCentToSplit]=bestNewCents[0,:]
        #添加新的类的质心向量
        centList.append(bestNewCents[1,:])
        #更新clusterAssment列表中参与2-均值聚类数据点变化后的分类编号,及数据该类的误差平方
        clusterAssment[nonzero(clusterAssment[:,0].A==\
                bestCentToSplit)[0],:]=bestClustAss
        #返回聚类结果
        return mat(centList),clusterAssment
复制代码

  在上述算法中,直到簇的数目达到k值,算法才会停止。在算法中通过将所有的簇进行划分,然后分别计算划分后所有簇的误差。选择使得总误差最小的那个簇进行划分。划分完成后,要更新簇的质心列表,数据点的分类结果及误差平方。具体地,假设划分的簇为m(m<k)个簇中的第i个簇,那么这个簇分成的两个簇后,其中一个取代该被划分的簇,成为第i个簇,并计算该簇的质心;此外,将划分得到的另外一个簇,作为一个新的簇,成为第m+1个簇,并计算该簇的质心。此外,算法中还存储了各个数据点的划分结果和误差平方,此时也应更新相应的存储信息。这样,重复该过程,直至簇个数达到k。

  通过上述算法,之前陷入局部最小值的的这些数据,经过二分K-means算法多次划分后,逐渐收敛到全局最小值,从而达到了令人满意的聚类效果。

  示例:对地图上的点进行聚类

  现在有一个存有70个地址和城市名的文本,而没有这些地点的距离信息。而我们想要对这些地点进行聚类,找到每个簇的质心地点,从而可以安排合理的行程,即质心之间选择交通工具抵达,而位于每个质心附近的地点就可以采取步行的方法抵达。显然,K-means算法可以为我们找到一种更加经济而且高效的出行方式。

1 通过地址信息获取相应的经纬度信息

  那么,既然没有地点之间的距离信息,怎么计算地点之间的距离呢?又如何比较地点之间的远近呢?

  我们手里只有各个地点的地址信息,那么如果有一个API,可以让我们输入地点信息,返回该地点的经度和纬度信息,那么我们就可以通过球面距离计算方法得到两个地点之间的距离了。而Yahoo!PlaceFinder API可以帮助我们实现这一目标。获取地点信息对应经纬度的代码如下:

复制代码
#Yahoo!PlaceFinder API
#导入urllib
import urllib
#导入json模块
import json

#利用地名,城市获取位置经纬度函数
def geoGrab(stAddress,city):
    #获取经纬度网址
    apiStem='http://where.yahooapis.com/geocode?'
    #初始化一个字典,存储相关参数
    params={}
    #返回类型为json
    params['flags']='J'
    #参数appid
    params['appid']='ppp68N8t'
    #参数地址位置信息
    params['location']=('%s %s', %(stAddress,city))
    #利用urlencode函数将字典转为URL可以传递的字符串格式
    url_params=urllib.urlencode(params)
    #组成完整的URL地址api
    yahooApi=apiStem+url_params
    #打印该URL地址
    print('%s',yahooApi)
    #打开URL,返回json格式的数据
    c=urllib.urlopen(yahooApi)
    #返回json解析后的数据字典
    return json.load(c.read())

from time import sleep
#具体文本数据批量地址经纬度获取函数
def massPlaceFind(fileName):
    #新建一个可写的文本文件,存储地址,城市,经纬度等信息
    fw=open('places.txt','wb+')
    #遍历文本的每一行
    for line in open(fileName).readlines();
        #去除首尾空格
        line =line.strip()
        #按tab键分隔开
        lineArr=line.split('\t')
        #利用获取经纬度函数获取该地址经纬度
        retDict=geoGrab(lineArr[1],lineArr[2])
        #如果错误编码为0,表示没有错误,获取到相应经纬度
        if retDict['ResultSet']['Error']==0:
            #从字典中获取经度
            lat=float(retDict['ResultSet']['Results'][0]['latitute'])
            #维度
            lng=float(retDict['ResultSet']['Results'][0]['longitute'])
            #打印地名及对应的经纬度信息
            print('%s\t%f\t%f',%(lineArr[0],lat,lng))
            #将上面的信息存入新的文件中
            fw.write('%s\t%f\t%f\n',%(line,lat,lng))
        #如果错误编码不为0,打印提示信息
        else:print('error fetching')
        #为防止频繁调用API,造成请求被封,使函数调用延迟一秒
        sleep(1)
    #文本写入关闭
    fw.close()
复制代码

  在上述代码中,首先创建一个字典,字典里面存储的是通过URL获取经纬度所必要的参数,即我们想要的返回的数据格式flogs=J;获取数据的appid;以及要输入的地址信息(stAddress,city)。然后,通过urlencode()函数帮助我们将字典类型的信息转化为URL可以传递的字符串格式。最后,打开URL获取返回的JSON类型数据,通过JSON工具来解析返回的数据。且在返回的结果中,当错误编码为0时表示,得到了经纬度信息,而为其他值时,则表示返回经纬度信息失败。

  此外,在代码中,每次获取完一个地点的经纬度信息后,延迟一秒钟。这样做的目的是为了避免频繁的调用API,请求被封掉的情况。

  

2 对地理位置进行聚类

  我们已经得到了各个地点的经纬度信息,但是我们还要选择计算距离的合适的方式。我们知道,在北极每走几米的经度变化可能达到数十度,而沿着赤道附近走相同的距离,带来的经度变化可能是零。这是,我们可以使用球面余弦定理来计算两个经纬度之间的实际距离。具体代码如下:

复制代码
#球面距离计算及簇绘图函数
def distSLC(vecA,vecB):
    #sin()和cos()以弧度未输入,将float角度数值转为弧度,即*pi/180
    a=sin(vecA[0,1]*pi/180)*sin(vecB[0,1]*pi/180)
    b=cos(vecA[0,1]*pi/180)*cos(vecB[0,1]*pi/180)*\
        cos(pi*(vecB[0,0]-vecA[0,0])/180)
    return arcos(a+b)*6371.0

import matplotlib
import matplotlib.pyplot as plt

#@numClust:聚类个数,默认为5
def clusterClubs(numClust=5):
    datList=[]
    #解析文本数据中的每一行中的数据特征值
    for line in open('places.txt').readlines():
        lineArr=line.split('\t')
        datList.append([float(lineArr[4]),float(lineArr[4])])
        datMat=mat(datList)
        #利用2-均值聚类算法进行聚类
        myCentroids,clusterAssing=biKmeans(datMat,numClust,\
            distMeas=distSLC)
        #对聚类结果进行绘图
        fig=plt.figure()
        rect=[0.1,0.1,0.8,0.8]
        scatterMarkers=['s','o','^','8'.'p',\
            'd','v','h','>','<']
        axprops=dict(xticks=[],ytick=[])
        ax0=fig.add_axes(rect,label='ax0',**axprops)
        imgP=plt.imread('Portland.png')
        ax0.imshow(imgP)
        ax1=fig.add_axes(rect,label='ax1',frameon=False)
        for i in range(numClust):
            ptsInCurrCluster=datMat[nonzero(clusterAssing[:,0].A==i)[0],:]
            markerStyle=scatterMarkers[i % len(scatterMarkers))]
            ax1.scatter(ptsInCurrCluster[:,0].flatten().A[0],\
                ptsInCurrCluster[:,1].flatten().A[0],\
                    marker=markerStyle,s=90)
        ax1.scatter(myCentroids[:,0].flatten().A[0],\
            myCentroids[:,1].flatten().A[0],marker='+',s=300)
        #绘制结果显示
        plt.show()
复制代码

最后,将聚类的结果绘制出来:

7、思考

  • k值如何确定?
    • ISODATA算法针对这个问题进行了改进:当属于某个类别的样本数过少时把这个类别去除,当属于某个类别的样本数过多、分散程度较大时把这个类别分为两个子类别(类的自动合并和分裂)
    • Elbow Method:通过绘制K-means代价函数与聚类数目K的关系图,选取直线拐点处的K值作为最佳的聚类中心数目
    • 从实际问题出发,人工指定比较合理的K值,通过多次随机初始化聚类中心选取比较满意的结果
    • 根据方差分析理论,应用混合 F 统计量来确定最佳分类数,并应用了模糊划分熵来验证最佳分类数的正确性
    • 使用了一种结合全协方差矩阵的 RPCL 算法,并逐步删除那些只包含少量训练数据的类
    • 使用的是一种称为次胜者受罚的竞争学习规则,来自动决定类的适当数目。它的思想是:对每个输入而言,不仅竞争获胜单元的权值被修正以适应输入值,而且对次胜单元采用惩罚的方法使之远离输入值。
  • 初始随机种子如何确定
    • K-means++选取K个聚类中心的思想:假设已经选取了n个初始聚类中心(0<n<K),则在选取第n+1个聚类中心时:距离当前n个聚类中心越远的点会有更高的概率被选为第n+1个聚类中心。在选取第一个聚类中心(n=1)时同样通过随机的方法(聚类中心互相离得越远越好)
    • 采用遗传算法(GA)进行初始化,以内部聚类准则作为评价指标
  • 度量方式
    • 传统K-means采用欧式距离进行样本间的相似度度量,显然并不是所有的数据集都适用于这种度量方式。kernel k-means参照支持向量机中核函数的思想,将所有样本映射到另外一个特征空间中再进行聚类,就有可能改善聚类效果
  • 空簇
    • 如果所有的点在指派步骤都未分配到某个簇,某个簇就会变成空簇。如果这种情况发生,则需要某种策略来选择一个替补聚类中心,否则的话,平方误差将会偏大(算法的目的就是使各个样本与所在类均值的误差平方和达到最小,这也是评价K-means算法最后聚类效果的评价标准)。一种方法是选择一个距离当前任何质心最远的点。这将消除当前对总平方误差影响最大的点
  • 噪声处理
    • k-means对离群值非常敏感,算法目标是簇内差异最小化,即SSE最小,所以单个噪音点也可以对整个簇造成很大的扰动,常用解决办法

          

  • 离散型数据处理

          

  

  k-means算法优缺点:

    优点:容易实现

    缺点:可能收敛到局部最小值,在大规模数据上收敛较慢

8、小结

  1 聚类是一种无监督的学习方法。聚类区别于分类,即事先不知道要寻找的内容,没有预先设定好的目标变量。

  2 聚类将数据点归到多个簇中,其中相似的数据点归为同一簇,而不相似的点归为不同的簇。相似度的计算方法有很多,具体的应用选择合适的相似度计算方法

  3 K-means聚类算法,是一种广泛使用的聚类算法,其中k是需要指定的参数,即需要创建的簇的数目,K-means算法中的k个簇的质心可以通过随机的方式获得,但是这些点需要位于数据范围内。在算法中,计算每个点到质心得距离,选择距离最小的质心对应的簇作为该数据点的划分,然后再基于该分配过程后更新簇的质心。重复上述过程,直至各个簇的质心不再变化为止。

  4 K-means算法虽然有效,但是容易受到初始簇质心的情况而影响,有可能陷入局部最优解。为了解决这个问题,可以使用另外一种称为二分K-means的聚类算法。二分K-means算法首先将所有数据点分为一个簇;然后使用K-means(k=2)对其进行划分;下一次迭代时,选择使得SSE下降程度最大的簇进行划分;重复该过程,直至簇的个数达到指定的数目为止。实验表明,二分K-means算法的聚类效果要好于普通的K-means聚类算法。

 

参考资料:https://www.cnblogs.com/zy230530/p/7029025.html

     https://www.cnblogs.com/xiaoyun94/p/7387863.html

     https://blog.csdn.net/zhihua_oba/article/details/73832614

Copyright © 2024 时光top
Powered by .NET 8.0 on Kubernetes