Kafka Streams开发入门(6)
1. 背景
上一篇介绍了merge算子的作用。这一篇介绍如何从一个Kafka Streams中过滤掉那些重复出现的事件,只留下那些唯一的事件。
2. 功能演示说明
假设我们要执行去重逻辑的事件格式如下:
{"ip":"10.0.0.1","url":"https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html","timestamp":"2019-09-16T14:53:43+00:00"}
每条事件依然由Protocol Buffer进行序列化,由三部分组成:ip + url + timestamp
3. 配置项目
首先创建项目路径
$ mkdir distinct-events && cd distinct-events
然后,在distinct-events目录下创建Gradle配置文件build.gradle,内容如下:
buildscript {
repositories {
jcenter()
}
dependencies {
classpath 'com.github.jengelman.gradle.plugins:shadow:4.0.2'
}
}
plugins {
id 'java'
id "com.google.protobuf" version "0.8.10"
}
apply plugin: 'com.github.johnrengelman.shadow'
repositories {
mavenCentral()
jcenter()
maven {
url 'http://packages.confluent.io/maven'
}
}
group 'huxihx.kafkastreams'
sourceCompatibility = 1.8
targetCompatibility = '1.8'
version = '0.0.1'
dependencies {
implementation 'com.google.protobuf:protobuf-java:3.0.0'
implementation 'org.slf4j:slf4j-simple:1.7.26'
implementation 'org.apache.kafka:kafka-streams:2.3.0'
implementation 'com.google.protobuf:protobuf-java:3.9.1'
testCompile group: 'junit', name: 'junit', version: '4.12'
}
protobuf {
generatedFilesBaseDir = "$projectDir/src/"
protoc {
artifact = 'com.google.protobuf:protoc:3.0.0'
}
}
jar {
manifest {
attributes(
'Class-Path': configurations.compile.collect { it.getName() }.join(' '),
'Main-Class': 'huxihx.kafkastreams.FindDistinctEvents'
)
}
}
shadowJar {
archiveName = "kstreams-transform-standalone-${version}.${extension}"
}
注意我们设定的主类名称是huxihx.kafkastreams.FindDistinctEvents。
保存上面的文件,然后执行下列命令下载Gradle的wrapper套件:
$ gradle wrapper
做完这些之后,我们在distinct-events目录下创建名为configuration的子目录,用于保存我们的参数配置文件dev.properties:
$ mkdir configuration
application.id=find-distinct-app bootstrap.servers=localhost:9092 input.topic.name=clicks input.topic.partitions=1 input.topic.replication.factor=1 output.topic.name=distinct-clicks output.topic.partitions=1 output.topic.replication.factor=1
这里我们配置了一个输入topic和一个输出topic,分别保存输入消息流和去重之后的新消息流。
4. 创建消息Schema
接下来创建用到的topic的schema。在distinct-events下执行命令创建保存schema的文件夹:
$ mkdir -p src/main/proto
之后在proto文件夹下创建名为click.proto文件,内容如下:
syntax = "proto3";
package huxihx.kafkastreams.proto;
message Click {
string ip = 1;
string url = 2;
string timestamp = 3;
}
保存之后在distinct-events目录下运行gradlew命令:
$ ./gradlew build
此时,你应该可以在distinct-events/src/main/java/huxihx/kafkastreams/proto下看到生成的Java类:ClickOuterClass。
5. 创建Serdes
这一步我们为所需的topic消息创建各自的Serdes。首先在distinct-events目录下执行下面的命令创建对应的文件夹目录:
$ mkdir -p src/main/java/huxihx/kafkastreams/serdes
之后在新创建的serdes文件夹下创建ProtobufSerializer.java:
package huxihx.kafkastreams.serdes;
import com.google.protobuf.MessageLite;
import org.apache.kafka.common.serialization.Serializer;
public class ProtobufSerializer<T extends MessageLite> implements Serializer<T> {
@Override
public byte[] serialize(String topic, T data) {
return data == null ? new byte[0] : data.toByteArray();
}
}
然后是ProtobufDeserializer.java:
package huxihx.kafkastreams.serdes;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.errors.SerializationException;
import org.apache.kafka.common.serialization.Deserializer;
import java.util.Map;
public class ProtobufDeserializer<T extends MessageLite> implements Deserializer<T> {
private Parser<T> parser;
@Override
public void configure(Map<String, ?> configs, boolean isKey) {
parser = (Parser<T>) configs.get("parser");
}
@Override
public T deserialize(String topic, byte[] data) {
try {
return parser.parseFrom(data);
} catch (InvalidProtocolBufferException e) {
throw new SerializationException("Failed to deserialize from a protobuf byte array.", e);
}
}
}
最后是ProtobufSerdes.java:
package huxihx.kafkastreams.serdes;
import com.google.protobuf.MessageLite;
import com.google.protobuf.Parser;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.Serde;
import org.apache.kafka.common.serialization.Serializer;
import java.util.HashMap;
import java.util.Map;
public class ProtobufSerdes<T extends MessageLite> implements Serde<T> {
private final Serializer<T> serializer;
private final Deserializer<T> deserializer;
public ProtobufSerdes(Parser<T> parser) {
serializer = new ProtobufSerializer<>();
deserializer = new ProtobufDeserializer<>();
Map<String, Parser<T>> config = new HashMap<>();
config.put("parser", parser);
deserializer.configure(config, false);
}
@Override
public Serializer<T> serializer() {
return serializer;
}
@Override
public Deserializer<T> deserializer() {
return deserializer;
}
}
6. 开发主流程
首先在src/main/java/huxihx/kafkastreams下创建DeduplicationTransformer.java。该Java类用于实现去重逻辑:
package huxihx.kafkastreams;
import org.apache.kafka.streams.KeyValue;
import org.apache.kafka.streams.kstream.KeyValueMapper;
import org.apache.kafka.streams.kstream.Transformer;
import org.apache.kafka.streams.processor.ProcessorContext;
import org.apache.kafka.streams.state.WindowStore;
import org.apache.kafka.streams.state.WindowStoreIterator;
/**
* 根据ip地址执行去重逻辑
* @param <K>
* @param <V>
* @param <E>
*/
public class DeduplicationTransformer<K, V, E> implements Transformer<K, V, KeyValue<K, V>> {
private static final String storeName = "eventId-store";
private ProcessorContext context;
private WindowStore<E, Long> eventIdStore;
private final long leftDurationMs;
private final long rightDurationMs;
private final KeyValueMapper<K, V, E> idExtractor;
DeduplicationTransformer(final long maintainDurationPerEventInMs, final KeyValueMapper<K, V, E> idExtractor) {
if (maintainDurationPerEventInMs < 1) {
throw new IllegalArgumentException("maintain duration per event must be >= 1");
}
leftDurationMs = maintainDurationPerEventInMs / 2;
rightDurationMs = maintainDurationPerEventInMs - leftDurationMs;
this.idExtractor = idExtractor;
}
@Override
public void init(ProcessorContext context) {
this.context = context;
eventIdStore = (WindowStore<E, Long>) context.getStateStore(storeName);
}
@Override
public KeyValue<K, V> transform(K key, V value) {
final E eventId = idExtractor.apply(key, value);
if (eventId == null) {
return KeyValue.pair(key, value);
} else {
final KeyValue<K, V> output;
if (isDuplicate(eventId)) {
output = null;
updateTimestampOfExistingEventToPreventExpiry(eventId, context.timestamp());
} else {
output = KeyValue.pair(key, value);
rememberNewEvent(eventId, context.timestamp());
}
return output;
}
}
private boolean isDuplicate(final E eventId) {
final long eventTime = context.timestamp();
final WindowStoreIterator<Long> timeIterator = eventIdStore.fetch(
eventId, eventTime - leftDurationMs, eventTime + rightDurationMs);
final boolean isDuplicate = timeIterator.hasNext();
timeIterator.close();
return isDuplicate;
}
private void updateTimestampOfExistingEventToPreventExpiry(final E eventId, final long newTimestamp) {
eventIdStore.put(eventId, newTimestamp, newTimestamp);
}
private void rememberNewEvent(final E eventId, final long timestamp) {
eventIdStore.put(eventId, timestamp, timestamp);
}
@Override
public void close() {
}
}
然后,在src/main/java/huxihx/kafkastreams下创建FindDistinctEvents.java文件:
package huxihx.kafkastreams;
import huxihx.kafkastreams.proto.ClickOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerdes;
import org.apache.kafka.clients.admin.AdminClient;
import org.apache.kafka.clients.admin.AdminClientConfig;
import org.apache.kafka.clients.admin.NewTopic;
import org.apache.kafka.clients.admin.TopicListing;
import org.apache.kafka.common.serialization.Serdes;
import org.apache.kafka.streams.KafkaStreams;
import org.apache.kafka.streams.StreamsBuilder;
import org.apache.kafka.streams.StreamsConfig;
import org.apache.kafka.streams.Topology;
import org.apache.kafka.streams.kstream.Consumed;
import org.apache.kafka.streams.kstream.Produced;
import org.apache.kafka.streams.state.StoreBuilder;
import org.apache.kafka.streams.state.Stores;
import org.apache.kafka.streams.state.WindowStore;
import java.io.FileInputStream;
import java.io.IOException;
import java.time.Duration;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.concurrent.CountDownLatch;
import java.util.stream.Collectors;
public class FindDistinctEvents {
private static final String storeName = "eventId-store";
public static void main(String[] args) throws Exception {
if (args.length < 1) {
throw new IllegalArgumentException("Config file path must be specified.");
}
FindDistinctEvents app = new FindDistinctEvents();
Properties envProps = app.loadEnvProperties(args[0]);
Properties streamProps = app.createStreamsProperties(envProps);
Topology topology = app.buildTopology(envProps);
app.preCreateTopics(envProps);
final KafkaStreams streams = new KafkaStreams(topology, streamProps);
final CountDownLatch latch = new CountDownLatch(1);
Runtime.getRuntime().addShutdownHook(new Thread("streams-shutdown-hook") {
@Override
public void run() {
streams.close();
latch.countDown();
}
});
try {
streams.start();
latch.await();
} catch (Exception e) {
System.exit(1);
}
System.exit(0);
}
private Topology buildTopology(Properties envProps) {
final StreamsBuilder builder = new StreamsBuilder();
final ProtobufSerdes<ClickOuterClass.Click> clickSerdes = clickProtobufSerdes();
final String inputTopic = envProps.getProperty("input.topic.name");
final String outputTopic = envProps.getProperty("output.topic.name");
final Duration windowSize = Duration.ofMinutes(2);
final StoreBuilder<WindowStore<String, Long>> dedupStoreBuilder = Stores.windowStoreBuilder(
Stores.persistentWindowStore(storeName,
windowSize,
windowSize,
false
),
Serdes.String(),
Serdes.Long());
builder.addStateStore(dedupStoreBuilder);
builder.stream(inputTopic, Consumed.with(Serdes.String(), clickSerdes))
.transform(() -> new DeduplicationTransformer<>(windowSize.toMillis(), (key, value) -> value.getIp()), storeName)
.to(outputTopic, Produced.with(Serdes.String(), clickSerdes));
return builder.build();
}
private Properties createStreamsProperties(Properties envProps) {
Properties props = new Properties();
props.put(StreamsConfig.APPLICATION_ID_CONFIG, envProps.getProperty("application.id"));
props.put(StreamsConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers"));
props.put(StreamsConfig.DEFAULT_KEY_SERDE_CLASS_CONFIG, Serdes.String().getClass());
props.put(StreamsConfig.DEFAULT_VALUE_SERDE_CLASS_CONFIG, Serdes.String().getClass());
return props;
}
private void preCreateTopics(Properties envProps) throws Exception {
Map<String, Object> config = new HashMap<>();
config.put(AdminClientConfig.BOOTSTRAP_SERVERS_CONFIG, envProps.getProperty("bootstrap.servers"));
String inputTopic = envProps.getProperty("input.topic.name");
String outputTopic = envProps.getProperty("output.topic.name");
try (AdminClient client = AdminClient.create(config)) {
Collection<TopicListing> existingTopics = client.listTopics().listings().get();
List<NewTopic> topics = new ArrayList<>();
List<String> topicNames = existingTopics.stream().map(TopicListing::name).collect(Collectors.toList());
if (!topicNames.contains(inputTopic))
topics.add(new NewTopic(
inputTopic,
Integer.parseInt(envProps.getProperty("input.topic.partitions")),
Short.parseShort(envProps.getProperty("input.topic.replication.factor"))));
if (!topicNames.contains(outputTopic))
topics.add(new NewTopic(
outputTopic,
Integer.parseInt(envProps.getProperty("output.topic.partitions")),
Short.parseShort(envProps.getProperty("output.topic.replication.factor"))));
if (!topics.isEmpty())
client.createTopics(topics).all().get();
}
}
private Properties loadEnvProperties(String fileName) throws IOException {
Properties envProps = new Properties();
try (FileInputStream input = new FileInputStream(fileName)) {
envProps.load(input);
}
return envProps;
}
private static ProtobufSerdes<ClickOuterClass.Click> clickProtobufSerdes() {
return new ProtobufSerdes<>(ClickOuterClass.Click.parser());
}
}
主要的逻辑在buildTopology方法中,我们使用自定义的DeduplicationTransformer来实现2分钟的窗口化去重逻辑。
7. 编写测试Producer和Consumer
和之前的入门系列一样,我们编写TestProducer和TestConsumer类。在src/main/java/huxihx/kafkastreams/tests/TestProducer.java和TestConsumer.java,内容分别如下:
TestProducer.java:
package huxihx.kafkastreams.tests;
import huxihx.kafkastreams.proto.ClickOuterClass;
import huxihx.kafkastreams.serdes.ProtobufSerializer;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.Producer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;
import java.util.Arrays;
import java.util.List;
import java.util.Properties;
public class TestProducer {
private static final List<ClickOuterClass.Click> TEST_CLICK_EVENTS = Arrays.asList(
ClickOuterClass.Click.newBuilder().setIp("10.0.0.1")
.setUrl("https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html")
.setTimestamp("2019-09-16T14:53:43+00:00").build(),
ClickOuterClass.Click.newBuilder().setIp("10.0.0.2")
.setUrl("https://www.confluent.io/hub/confluentinc/kafka-connect-datagen")
.setTimestamp("2019-09-16T14:53:43+00:01").build(),
ClickOuterClass.Click.newBuilder().setIp("10.0.0.3")
.setUrl("https://www.confluent.io/hub/confluentinc/kafka-connect-datagen")
.setTimestamp("2019-09-16T14:53:43+00:03").build(),
ClickOuterClass.Click.newBuilder().setIp("10.0.0.1")
.setUrl("https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html")
.setTimestamp("2019-09-16T14:53:43+00:00").build(),
ClickOuterClass.Click.newBuilder().setIp("10.0.0.2")
.setUrl("https://www.confluent.io/hub/confluentinc/kafka-connect-datagen")
.setTimestamp("2019-09-16T14:53:43+00:01").build(),
ClickOuterClass.Click.newBuilder().setIp("10.0.0.3")
.setUrl("https://www.confluent.io/hub/confluentinc/kafka-connect-datagen")
.setTimestamp("2019-09-16T14:53:43+00:03").build()
);
public static void main(String[] args) {
Properties props = new Properties();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ProducerConfig.ACKS_CONFIG, "all");
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, new ProtobufSerializer<ClickOuterClass.Click>().getClass());
try (final Producer<String, ClickOuterClass.Click> producer = new KafkaProducer<>(props)) {
TEST_CLICK_EVENTS.stream().map(click -> new ProducerRecord<String, ClickOuterClass.Click>("clicks", click)).forEach(producer::send);
}
}
}
TestConsumer.java:
package huxihx.kafkastreams.tests;
import com.google.protobuf.Parser;
import huxihx.kafkastreams.proto.ClickOuterClass;
import huxihx.kafkastreams.serdes.ProtobufDeserializer;
import org.apache.kafka.clients.consumer.Consumer;
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.common.serialization.Deserializer;
import org.apache.kafka.common.serialization.StringDeserializer;
import java.time.Duration;
import java.util.Arrays;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;
public class TestConsumer {
public static void main(String[] args) {
Deserializer<ClickOuterClass.Click> deserializer = new ProtobufDeserializer<>();
Map<String, Parser<ClickOuterClass.Click>> config = new HashMap<>();
config.put("parser", ClickOuterClass.Click.parser());
deserializer.configure(config, false);
Properties props = new Properties();
props.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "localhost:9092");
props.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group01");
props.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "1000");
props.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest");
try (final Consumer<String, ClickOuterClass.Click> consumer = new KafkaConsumer<>(props, new StringDeserializer(), deserializer)) {
consumer.subscribe(Arrays.asList("distinct-clicks"));
while (true) {
ConsumerRecords<String, ClickOuterClass.Click> records = consumer.poll(Duration.ofMillis(1000));
for (ConsumerRecord<String, ClickOuterClass.Click> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
}
}
}
}
}
8. 测试
首先我们运行下列命令构建项目:
$ ./gradlew shadowJar
然后启动Kafka集群,之后运行Kafka Streams应用:
$ java -jar build/libs/kstreams-transform-standalone-0.0.1.jar configuration/dev.properties
现在启动两个终端分别测试Producer和Consumer:
$ java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestProducer
$ java -cp build/libs/kstreams-transform-standalone-0.0.1.jar huxihx.kafkastreams.tests.TestConsumer
如果一切正常的话,那么TestConsumer应该会输出3条消息:
offset = 0, key = null, value = ip: "10.0.0.1"
url: "https://docs.confluent.io/current/tutorials/examples/kubernetes/gke-base/docs/index.html"
timestamp: "2019-09-16T14:53:43+00:00"
offset = 1, key = null, value = ip: "10.0.0.2"
url: "https://www.confluent.io/hub/confluentinc/kafka-connect-datagen"
timestamp: "2019-09-16T14:53:43+00:01"
offset = 2, key = null, value = ip: "10.0.0.3"
url: "https://www.confluent.io/hub/confluentinc/kafka-connect-datagen"
timestamp: "2019-09-16T14:53:43+00:03"
浙公网安备 33010602011771号