1069 The Black Hole of Numbers (20分)【数学问题】
1069 The Black Hole of Numbers (20分)
For any 4-digit integer except the ones with all the digits being the same, if we sort the digits in non-increasing order first, and then in non-decreasing order, a new number can be obtained by taking the second number from the first one. Repeat in this manner we will soon end up at the number 6174 -- the black hole of 4-digit numbers. This number is named Kaprekar Constant.
For example, start from 6767, we'll get:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
7641 - 1467 = 6174
... ...
Given any 4-digit number, you are supposed to illustrate the way it gets into the black hole.
Input Specification:
Each input file contains one test case which gives a positive integer N in the range (0,104).
Output Specification:
If all the 4 digits of N are the same, print in one line the equation N - N = 0000. Else print each step of calculation in a line until 6174 comes out as the difference. All the numbers must be printed as 4-digit numbers.
Sample Input 1:
6767
Sample Output 1:
7766 - 6677 = 1089
9810 - 0189 = 9621
9621 - 1269 = 8352
8532 - 2358 = 6174
Sample Input 2:
2222
Sample Output 2:
2222 - 2222 = 0000
解题思路:
这道题目其实很好理解,我们写一个函数将输入的数的各个位的数重新排列,然后返回其最大和最小的数。
#include<iostream>
#include<algorithm>
using namespace std;
int cmp(int a, int b) //递减排序
{
return a > b;
}
void fun(int num, int &max, int &min)
{
int arr[5];
for (int i = 0; i < 4; i++)
{
arr[i] = num % 10;
num /= 10;
}
sort(arr, arr + 4, cmp);
for (int i = 0; i < 4; i++)
{
max = max * 10;
max += arr[i];
}
for (int i = 3; i >=0; i--)
{
min = min * 10;
min += arr[i];
}
}
int main()
{
int num;
cin >> num;
int ans = -1;
while (ans != 6174)
{
int max = 0, min = 0;
fun(num, max, min);
ans = max - min;
printf("%04d - %04d = %04d\n", max, min, ans);
num = ans;
if (ans == 0)
break;
}
return 0;
}

浙公网安备 33010602011771号