BZOJ1026: [SCOI2009]windy数

1026: [SCOI2009]windy数

Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 9240 Solved: 4213
[Submit][Status][Discuss]

Description

  windy定义了一种windy数。不含前导零且相邻两个数字之差至少为2的正整数被称为windy数。 windy想知道,
在A和B之间,包括A和B,总共有多少个windy数?

Input

  包含两个整数,A B。

Output

  一个整数

Sample Input

【输入样例一】

1 10

【输入样例二】

25 50

Sample Output

【输出样例一】

9

【输出样例二】

20

HINT

【数据规模和约定】

100%的数据,满足 1 <= A <= B <= 2000000000 。

Source

题解

不难想思路。
真TMD难写啊。
具体看代码。

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <map>
#include <cmath>
inline long long max(long long a, long long b){return a > b ? a : b;}
inline long long min(long long a, long long b){return a < b ? a : b;}
inline long long abs(long long x){return x < 0 ? -x : x;}
inline void swap(long long &x, long long &y){long long tmp = x;x = y;y = tmp;}
inline void read(long long &x)
{
    x = 0;char ch = getchar(), c = ch;
    while(ch < '0' || ch > '9') c = ch, ch = getchar();
    while(ch <= '9' && ch >= '0') x = x * 10 + ch - '0', ch = getchar();
    if(c == '-') x = -x;
}
const long long INF = 0x3f3f3f3f;
long long dp[110][10], num[110];
//dp[i][j]:<= i位数,最高位为j 

//计算1...x - 1的windy数个数 
long long solve(long long x)
{
    if(x == 0) return 1;
    long long M = 0, tmp = x;
    while(tmp) 
    {
        num[++ M] = tmp % 10;
        tmp /= 10;
    }
    long long pre = num[M], re = 0;
    for(int i = 1;i < num[M];++ i)
        re += dp[M][i];
    for(int i = 1;i < M;++ i)
        for(int j = 1;j <= 9;++ j)
            re += dp[i][j];         
    for(long long i = M - 1;i >= 1;-- i)
    {
        for(long long j = 0;j < num[i];++ j)
            if(abs(num[i + 1] - j) >= 2)
                re += dp[i][j];
        if(abs(num[i + 1] - num[i]) < 2) break;
    }
    return re;
} 

int main()
{
    for(long long i = 0;i <= 9;++ i) dp[1][i] = 1;
    for(long long i = 2;i <= 11; ++ i)
        for(long long j = 0;j <= 9;++ j)
            for(long long k = 0;k <= 9;++ k)
                if(abs(j - k) >= 2)
                    dp[i][j] += dp[i - 1][k];
    long long a,b;
    read(a), read(b);
    if(a > b) swap(a, b);
    printf("%lld\n", solve(b + 1) - solve(a)); 
    return 0;
}
posted @ 2018-03-08 21:55  嘒彼小星  阅读(...)  评论(... 编辑 收藏