【模板】tarjanLCA [2017年6月计划 学习tarjanLCA]
P3379 【模板】最近公共祖先(LCA)
题目描述
如题,给定一棵有根多叉树,请求出指定两个点直接最近的公共祖先。
输入输出格式
输入格式:第一行包含三个正整数N、M、S,分别表示树的结点个数、询问的个数和树根结点的序号。
接下来N-1行每行包含两个正整数x、y,表示x结点和y结点之间有一条直接连接的边(数据保证可以构成树)。
接下来M行每行包含两个正整数a、b,表示询问a结点和b结点的最近公共祖先。
输出格式:输出包含M行,每行包含一个正整数,依次为每一个询问的结果。
输入输出样例
输入样例#1:
5 5 4 3 1 2 4 5 1 1 4 2 4 3 2 3 5 1 2 4 5
输出样例#1:
4 4 1 4 4
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=10,M<=10
对于70%的数据:N<=10000,M<=10000
对于100%的数据:N<=500000,M<=500000
样例说明:
该树结构如下:

第一次询问:2、4的最近公共祖先,故为4。
第二次询问:3、2的最近公共祖先,故为4。
第三次询问:3、5的最近公共祖先,故为1。
第四次询问:1、2的最近公共祖先,故为4。
第五次询问:4、5的最近公共祖先,故为4。
故输出依次为4、4、1、4、4。
#include <bits/stdc++.h>
inline void read(int &x){x = 0;char ch = getchar();char c = ch;while(ch > '9' || ch < '0')c = ch, ch = getchar();while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();if(c == '-')x = -x;}
inline void read(long long &x){x = 0;char ch = getchar();char c = ch;while(ch > '9' || ch < '0')c = ch, ch = getchar();while(ch <= '9' && ch >= '0')x = x * 10 + ch - '0', ch = getchar();if(c == '-')x = -x;}
const int INF = 0x3f3f3f3f;
const int MAXN = 500000 + 10;
const int MAXM = 500000 + 10;
long long n,m,root;
struct Edge
{
int u,v,next;
}edge[(MAXN << 1) + 10];
int head[MAXN],cnt;
inline void insert(int a,int b){edge[++cnt] = Edge{a,b,head[a]};head[a] = cnt;}
struct qEdge
{
int u,v,next,ans;
}qedge[(MAXM << 1) + 20];
int qhead[MAXM], qcnt;
inline void qinsert(int a,int b){qedge[++qcnt] = qEdge{a,b,qhead[a],0};qhead[a] = qcnt;}
int tmp1,tmp2;
bool b[MAXN];
int fa[MAXN];
//并查集
int find(int x)
{
return x == fa[x] ? fa[x] : fa[x] = find(fa[x]);
}
void merge(int a, int b)
{
int tmp1 = find(a);int tmp2 = find(b);
if(tmp1 == tmp2)
{
return;
}
else
{
fa[tmp2] = find(tmp1);
}
}
void dfs(int u)
{
for(int pos = head[u];pos;pos = edge[pos].next)
{
int v = edge[pos].v;
if(!b[v])
{
b[v] = true;
dfs(v);
merge(u, v);//把v指向u合并
}
}
for(int pos = qhead[u];pos;pos = qedge[pos].next)
{
int v = qedge[pos].v;
if(b[v])
{
int tmp = find(v);
qedge[pos].ans = tmp;
if(pos & 1)
{
qedge[pos + 1].ans = tmp;
}
else
{
qedge[pos - 1].ans = tmp;
}
}
}
}
void tarjan()
{
for(int i = 1;i <= n;i ++)
{
fa[i] = i;
}
b[root] = true;
dfs(root);
}
int main()
{
read(n);read(m);read(root);
for(int i = 1;i < n;i ++)
{
read(tmp1);read(tmp2);
insert(tmp1, tmp2);
insert(tmp2, tmp1);
}
for(int i = 1;i <= m;i ++)
{
read(tmp1);read(tmp2);
qinsert(tmp1, tmp2);
qinsert(tmp2, tmp1);
}
tarjan();
for(int i = 1;i <= m;i ++)
{
printf("%d\n", qedge[i * 2].ans);
}
return 0;
}

浙公网安备 33010602011771号