pandas读写excel
【openpyxl】、【pandas】、【xlrd、xlwt】读写excel的区别
openpyxl读写excel
https://www.cnblogs.com/hudieren/p/16792200.html
pandas读写excel
https://www.cnblogs.com/hudieren/p/16792215.html
xlrd读excel文件、xlwt写入excel文件
https://www.cnblogs.com/hudieren/p/16792234.html
建议使用openpyxl写入,使用xlrd读取,xlwt速度也快,不使用的原因是只可以生成.xls文件
# -*- coding: utf-8 -*- # @Author : 107 # @File : pandas读写.py # @explain : import pandas as pd import time def read_xlsx(): name = "test.xlsx" sheet1 = pd.read_excel(name, sheet_name="地区") # nrows, ncols = sheet1.shape # 多少行,多少列 for i in range(sheet1.shape[0]): data = [sheet1.iloc[i, j] for j in range(sheet1.shape[1])] print(data) sheet2 = pd.read_excel(name, sheet_name="姓") for i in range(sheet2.shape[0]): data = [sheet2.iloc[i, j] for j in range(sheet2.shape[1])] print(data) sheet3 = pd.read_excel(name, sheet_name="男名") for i in range(sheet3.shape[0]): data = [sheet3.iloc[i, j] for j in range(sheet3.shape[1])] print(data) sheet4 = pd.read_excel(name, sheet_name="女名") for i in range(sheet4.shape[0]): data = [sheet4.iloc[i, j] for j in range(sheet4.shape[1])] print(data) def write_xlsx(): pass if __name__ == '__main__': start_time = int(time.time() * 1000) read_xlsx() # 读取 xlsx文件:994 毫秒 读取xls文件:660毫秒 # write_xlsx() end_time = int(time.time() * 1000) print(f"共花费 {end_time - start_time} 毫秒")

浙公网安备 33010602011771号