CNN 理论
我是半路出生的,看的理论方面的博客做个介绍:https://www.cnblogs.com/pinard/p/6483207.html

https://blog.csdn.net/cxmscb/article/details/71023576

看理论的话第一个博客就够了,第一个博主关于这方面的博客文章我前前后后看了大概十几遍吧,写的很好,能把我这样的渣渣带入门,我想大家也是可以的
实践的话,建议大家去看极客http://wiki.jikexueyuan.com/project/tensorflow-zh/tutorials/mnist_beginners.html
这个是MNIST机器学习入门的代码
"导入数据集"
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot = True)
import tensorflow as tf
# "占位符"
x = tf.placeholder(tf.float32,[None, 784])
# 权重和偏置量
W = tf.Variable(tf.zeros([784, 10 ]))
b = tf.Variable(tf.zeros([10]))
# softmax 模型
y = tf.nn.softmax(tf.matmul(x, W) + b)
# 交叉熵
y_ = tf.placeholder("float",[None, 10])
cross_entropy = -tf.reduce_sum(y_ * tf.log(y))
# 梯度下降算法以0.01的学习速率最小化交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
#初始化变量
init = tf.global_variables_initializer()
# 启动模型
sess = tf.Session()
sess.run(init)
for i in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
correct_prediction = tf.equal(tf.argmax(y, 1),tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
print(sess.run(accuracy,feed_dict={x: mnist.test.images,y_: mnist.test.labels }))
# 0.9042
深入MNIST
# -*- coding:utf-8-*-
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
W = tf.Variable(tf.zeros([784, 10]))
b = tf.Variable(tf.zeros([10]))
sess.run(tf.global_variables_initializer())
y = tf.nn.softmax(tf.matmul(x, W) + b)
cross_entropy = - tf.reduce_sum(y_ * tf.log(y))
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
for i in range(10000):
batch = mnist.train.next_batch(90)
train_step.run(feed_dict= {x: batch[0],y_:batch[1]})
correct_predict = tf.equal(tf.argmax(y,1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_predict,"float"))
print(accuracy.eval(feed_dict={x: mnist.test.images,y_:mnist.test.labels}))
#0.9084 50 1000
#0.9072 60 1000
#0.908 70 1000
#0.9135 80 1000
#0.9151 84 1000
#0.9175 85 1000
#0.9142 86 1000
#0.9133 90 1000
#0.9026 100 1000
#0.098 850 10000
#0.9245 85 10000
#0.924 90 10000
基于mnist的CNN
# -*- coding:utf-8-*-
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data", one_hot = True)
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape=[None, 784])
y_ = tf.placeholder("float", shape=[None, 10])
# 权重和偏置量初始化函数
def weight_variable(shape):
initial = tf.truncated_normal(shape,stddev=0.1)
return tf.Variable(initial)
def bias_variable(shape):
initial = tf.constant(0.1,shape=shape)
return tf.Variable(initial)
# 卷积和池化
def conv2d(x,W):
return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding="SAME")
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1,2,2,1],strides=[1,2,2,1],padding="SAME")
# 第一层卷积
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
x_image =tf.reshape(x, [-1, 28, 28, 1])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)
# 第二层卷积
W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)
# 密集连接层
W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,W_fc1)+b_fc1)
# dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
# 输出层
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
sess.run(tf.global_variables_initializer())
for i in range(2000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x: batch[0],y_:batch[1],keep_prob:1.0})
print("step %d,training accuracy %g "%(i, train_accuracy))
train_step.run(feed_dict={x: batch[0],y_:batch[1],keep_prob: 0.5})
print("test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))
以上代码都是可以运行的,但是还是建议大家自己去写一次,理解各种函数的意义,将理论和事件结合起来

浙公网安备 33010602011771号