[ZJOI2010]排列计数
好题,看出来实际是个堆的种数,忘了组合数。。
/**
* Problem:Magic
* Author:Shun Yao
* Time:2013.6.2
* Result:Accepted
* Memo:DP, Math
*/
#include <cstdio>
#include <cmath>
const long Maxn = 1000005;
long min(long x, long y) {
return x < y ? x : y;
}
long n;
long long p, f[Maxn], d[Maxn], jc[Maxn];
void exgcd(long long a, long long b, long long &x, long long &y) {
if (!b) {
x = 1;
y = 0;
} else {
exgcd(b, a % b, y, x);
y -= a / b * x;
}
}
long long mulinv(long long X) {
long long x, y;
exgcd(X, p, x, y);
return ((-x) / p * p + x + p) % p;
}
int main() {
long i, dep, u, l, r;
freopen("magic.in", "r", stdin);
freopen("magic.out", "w", stdout);
scanf("%ld%lld", &n, &p);
jc[0] = 1;
for (i = 1; i <= n; ++i)
jc[i] = jc[i - 1] * i % p;
f[0] = f[1] = d[0] = d[1] = 1 % p;
for (i = 2; i <= n; ++i) {
dep = (long)(log(i) / log(2) + 1e-10);
u = (long)(pow(2.0, dep) + 1e-10) - 1;
l = ((u - 1) >> 1) + min(i - u, ((u + 1) >> 1));
r = i - 1 - l;
f[i] = f[l] * f[r] % p * jc[i - 1] % p;
d[i] = d[l] * d[r] % p * jc[l] % p * jc[r] % p;
}
printf("%lld", f[n] * mulinv(d[n]) % p);
fclose(stdin);
fclose(stdout);
return 0;
}
作者:HSUPPR
出处:http://www.cnblogs.com/hsuppr/
本文版权归作者和博客园共有,欢迎转载,但未经作者同意必须保留此段声明,且在文章页面明显位置给出
原文链接,否则保留追究法律责任的权利。

浙公网安备 33010602011771号